

LINEAR AXES & LINEAR AXIS SYSTEMS

Germany

HIWIN GmbH Brücklesbünd 1 77654 Offenburg Deutschland Fon +49 781 93278-0 info@hiwin.de hiwin.de

Taiwan

Headquarters HIWIN Technologies Corp. No. 7, Jingke Road Precision Machinery Park Taichung 40852 Táiwān Fon +886 4 2359-4510 business@hiwin.tw

Taiwan

Headquarters HIWIN Mikrosystem Corp. No. 6, Jingke Čentral Road Precision Machinery Park Taichung 40852 Táiwān Fon +886 4 2355-0110 business@hiwinmikro.tw

France

HIWIN SAS Le Mélèze 17 Rue des Cigognes 67960 Entzheim Fon +33 3 882884-80 contact@hiwin.fr

Poland

HIWIN GmbH Biuro Warszawa ul. Puławska 405a 02-801 Warszawa Polska Fon +48 22 46280-00 info@hiwin.pl hiwin.pl

Denmark

HIWIN GmbH info@hiwin.dk hiwin.dk

Netherlands

HIWIN GmbH info@hiwin.nl hiwin.nl

HIWIN GmbH info@hiwin.at

Hungary

HIWIN GmbH info@hiwin.hu

Czech Republic

HIWIN s.r.o. Medkova 888/11 62700 Brno Česká republika Fon +42 05 48528-238 info@hiwin.cz

Bulgaria

HIWIN Bulgaria Christopher Columbus No. 4 1582 Sofia Bulgaria Fon +35 92 999 52 45 info@hiwin.bg hiwin.bg

Slovakia

HIWIN s.r.o., o.z.z.o. Mládežnicka 2101 01701 Považská Bystrica Slovensko Fon +421 424 4347-77 info@hiwin.sk hiwin.sk

Switzerland

HIWIN (Schweiz) GmbH Eichwiesstrasse 20 8645 Jona Schweiz Fon +41 55 22500-25 sales@hiwin.ch hiwin.ch

Italy HIWIN Srl Via Pitagora 4 20861 Brugherio (MB) Fon +39 039 28761-68 info@hiwin.it

Romania HIWIN Srl

info@hiwin.ro hiwin.ro

Slovenia

HIWIN Srl info@hiwin.si hiwin.si

China

HIWIN Corp. hiwin.cn

Japan

HIWIN Corp. info@hiwin.co.jp hiwin.co.jp

USA

HIWIN Corp. info@hiwin.com hiwin.us

Korea

HIWIN Corp.

Singapore HIWIN Corp.

hiwin.sg

LINEAR AXES & LINEAR AXIS SYSTEMS

Linear axes and linear axis systems are used in many industrial areas, e.g. to transport or position components. HIWIN offers linear axes with toothed belt drive for applications requiring high dynamic responses and speeds. The HIWIN modular system is a flexible solution for combining toothed belt axes into twin and multi-axis systems, depending on the application. HIWIN linear axes with ballscrew drive are available for applications requiring high feed forces and precision. HIWIN linear axes with linear motor drive fulfil the highest demands on dynamics, accuracy and synchronism. Due to their compact design and low moving mass the HIWIN cantilever axes are particularly suitable for vertical applications.

DOWNLOADS AND **APPLICATIONS**

Assembly instructions

Sizing tool

CAD configurator

Contents

Contents

1.	Product overview	6	9.	Linear tables HT-L	
			9.1	Properties of linear tables HT-S with linear motor	64
2.	General information	10	9.2	Order code for linear tables HT-L	65
2.1	Properties of linear modules HM	10	9.3	Dimensions and specifications of HT100L	66
2.2	Properties of linear tables HT	10	9.4	Dimensions and specifications of HT150L	68
2.3	Properties of HB bridge axes	10	9.5	Dimensions and specifications of HT200L	70
2.4	Properties of cantilever axis HC	11	9.6	Dimensions and specifications of HT250L	72
2.5	Properties of double axes HD	11		, , , , , , , , , , , , , , , , , , ,	
2.6	Properties of double axis systems HS2	11	10.	Bridge axes HB-B	74
2.7	Properties of three-axis systems HS3	11	10.1	Features of the HB-B bridge axes with toothed belt drive	74
2.8	Properties of linear gantries HSL	12	10.2	Order code for bridge axes HB-B	75
2.9	Properties of adapters for cross tables and multi-axis systems	12	10.3	Dimensions and specifications of HB250B	76
2.10	Properties of adapters for robot axes	12	10.0	bilicisions and specifications of fibesob	70
2.10	Installation location requirements	12	11.	Bridge axes HB-R	70
Z.11	instattation tocation requirements	17	11.1	Features of the HB-R bridge axes with rack and pinion drive	70 78
n	Calculation besis	10			
3.	Calculation basis	13	11.2	Order code for bridge axes HB-R	79
3.1	Calculation of the required drive torque for HM-B, HM-S, HT-B, HT-S,	4.0	11.3	Dimensions and specifications of HB250R	80
	HB-B, HB-R and HC	13			
3.2	Calculation of the required feed force for HT-L and HB-L	14	12.	Bridge axes HB-L	
3.3	Lifetime calculation	14	12.1	Features of the HB-L bridge axes with linear motor	82
3.4	Calculation of the support distance	18	12.2	Order code for bridge axes HB-L	83
			12.3	Dimensions and specifications of HB250L	84
4.	Product selection	20			
4.1	Linear axes	20	13.	Cantilever axes HC-B	86
4.2	Multi-axis systems	22	13.1	Properties of cantilever axes HC-B with toothed belt drive	86
			13.2	Order code for cantilever axes HC-B	87
5.	Linear modules HM-B	24	13.3	Dimensions and specifications of HCO25B	88
5.1	Properties of linear modules HM-B with toothed belt drive	24	13.4	Dimensions and specifications of HCO40B	90
5.2	Order code for linear modules HM-B	25	13.5	Dimensions and specifications of HCO60B	92
5.3	Dimensions and specifications of HM040B	26	13.6	Dimensions and specifications of HC080B	94
5.4	Dimensions and specifications of HM060B	28	13.7	Dimensions and specifications of HC100B	96
5.5	Dimensions and specifications of HM080B	30	13.8	Dimensions and specifications of HC150B	98
5.6	Dimensions and specifications of HM120B	32			
0.0	Difficitions and operational of in 11200	02	14.	Cantilever axes HC-R	100
6.	Linear modules HM-S	3/4	14.1	Features of the HC-R cantilever axes with rack and pinion drive	100
6.1	Properties of linear modules HM-S with ballscrew	34	14.2	Order code for cantilever axes HC-R	101
6.2	Order code for linear modules HM-S	35	14.3	Dimensions and specifications of HC150R	102
6.3	Dimensions and specifications of HM040S	36	14.0	bilicisions and specifications of fictions	102
	Dimensions and specifications of HM060S	38	15.	Double axes HD	107
6.4	Dimensions and specifications of HMO8OS	30 40	15.1	Properties of double axes HD with toothed belt drive	104
6.5		40 42			
6.6	Dimensions and specifications of HM120S	42	15.2	Order code for double axes HD	105
7	Linear Andrew HT D	,,	15.3	Dimensions and specifications of HD1	106
7.	Linear tables HT-B		15.4	Dimensions and specifications of HD2	107
7.1	Properties of linear tables HT-B with toothed belt drive	44	15.5	Dimensions and specifications of HD3	108
7.2	Order code for linear tables HT-B	45	15.6	Dimensions and specifications of HD4	109
7.3	Dimensions and specifications of HT100B	46			
7.4	Dimensions and specifications of HT150B	48	16.	Two-axis systems HS2	
7.5	Dimensions and specifications of HT200B	50	16.1	Properties of the double axis systems HS2	110
7.6	Dimensions and specifications of HT250B	52	16.2	Order code for two-axis systems HS2	111
			16.3	Dimensions and specifications of HS21-D-M	112
8.	Linear tables HT-S	54	16.4	Dimensions and specifications of HS21-D-T	114
8.1	Properties of linear tables HT-S with ballscrew	54	16.5	Dimensions and specifications of HS22-D-M	116
8.2	Order code for linear tables HT-S	55	16.6	Dimensions and specifications of HS22-D-T	118
8.3	Dimensions and specifications of HT100S	56	16.7	Dimensions and specifications of HS23-D-M	120
8.4	Dimensions and specifications of HT150S	58	16.8	Dimensions and specifications of HS23-D-T	122
8.5	Dimensions and specifications of HT200S	60	16.9	Dimensions and specifications of HS24-D-T	124
8.6	Dimensions and specifications of HT250S	62			

17.	Two-axis systems HS3	126
17.1	Properties of three-axis systems HS3	126
17.2	Order code for three-axis systems HS3	127
17.3	Dimensions and specifications of HS31-D-T-C	128
17.4	Dimensions and specifications of HS32-D-T-C	130
17.5	Dimensions and specifications of HS33-D-T-C	132
17.6	Dimensions and specifications of HS34-D-T-C	134
18.	Linear gantries HSL	136
18.1	Properties of the linear gantries HS3	136
18.2	Order code for linear gantries HSL	137
18.3	Dimensions and specifications of HSL1-T-C	138
18.4	Dimensions and specifications of HSL2-T-C	140
18.5	Dimensions and specifications of HSL3-T-C	142
18.6	Dimensions and specifications of HSL4-T-C	144
19.	Adapters for cross tables and multi-axis systems	1/.6
17. 19.1	Product selection	146
19.1		149
	CPN adapters	
19.3	CPN adapters	151
19.4	CCN adapters	153
19.5	CCR adapters	154
20.	Adapters for robot axes	155
21.	Distance measuring system	156
21.1	External distance measuring system HIWIN MAGIC for linear axes	
	HM-B, HM-S, HT-B, HT-S and HC	157
21.2	Internal distance measuring system for linear axes HT-L	158
22.	Drive adaptation	159
22.1	Drive adaptation of linear modules HM-B, linear tables HT-B,	107
<i>LL</i> .1	bridge axes HB -B, cantilever axes HC and double axes HD	159
22.2	Drive adaptation of linear modules HM-S and linear tables HT-S	174
22.3	Energy supply for linear axes HT-B, HB-B, HT-S and HB-R	186
22.4	Connection interface and energy supply for linear motor axes	100
LL.4	HT-L and HB-L	188
าา	Assessing	100
23.	Accessories	
23.1	Clamping profiles	190
23.2	Inut	192
23.3	Centring sleeve	192
23.4	Groove cover	193
23.5	Limit switches	193
23.6	Extension cable for limit switches	194
23.7	Damping element	194
23.8	Motor cable for linear tables HT-L	195
23.9	Encoder cable for incremental distance measuring system for linear tables HT-L	196
23.10	Encoder cable for absolute distance measuring system	170
20.10	for linear tables HT-L	197
23.11		197
23.11 23.12	Partitions for energy chain	198
	Belt for noise reduction of the energy chain	
23.13	Drive block cover	199
23.14	Journals for linear axes HM-B and cantilever axes HC	199
23.15	Synchronous shaft	200
23.17	HIWIN lubricants	201
23.16	HIWIN grease nipple	201
23.18	Push-in fittings and lubrication adapters	202
24	Glossary	204

Product overview

1. Product overview

Linear modules HM-B with toothed belt drive

Page 24

- High velocity
- High acceleration
- Long stroke lengths

Linear modules HM-S with ballscrew

Page 34

- High positioning accuracy
- High feed force
- High drive rigidity



Linear tables HT-B with toothed belt drive

Page 44

- High velocity
- High acceleration
- High rigidity and torque load capacity

due to double guide

Linear table HT-S with ballscrew

Page 54

- High positioning accuracy
- High feed force
- High rigidity and torque load capacity

due to double guide

Linear tables HT-L with linear motor

Page 64

- Maximum positioning accuracy
- Maximum dynamics
- Wear-free drive

HB-B bridge axes with toothed belt drive

Page 74

- Maximum rigidity due to closed profile
- High speed
- High feed force



HB-R bridge axes with rack and pinion drive

Page 78

- Maximum rigidity due to closed profile
- High speed
- High positioning accuracy

HB-L bridge axes with linear motor

<u>Page 82</u>

- Maximum rigidity due to closed profile
- Highest positioning accuracy
- High dynamics

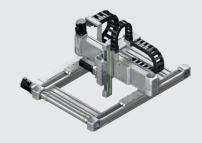
Cantilever axis HC-B with toothed belt drive

Page 86

- Compact design
- Low moving mass
- High dynamism

Cantilever axis HC-R with rack and pinion drive

<u>Page 100</u>


- Compact design
- High feed force
- High rigidity

Double axes HD

Page 104

- Two toothed belt axes HM-B connected to synchronous shaft
- Completely assembled unit
- Can be individually assembled

Multi-axis systems HS

Page 110

- X-Y-, X-Z- and X-Y-Z-systems with toothed belt axes
- Individual stroke length
- Ready-to-install complete system

Product overview

Adapters for cross tables and multi-axis systems

Page 146

- Flexible connection of two or more axes
- Components for building complete individual systems
- Secure positioning thanks to form and force closure

Adapters for robot axes

Page 155

- For mounting lightweight robots on linear axes HT
- Quick and safe connection
- Sets include mounting material

Drive adaptation

Page 159

- Adapter for flexible motor connection
- Gearbox/Belt drive
- Energy supply

Accessories

Page 190

- Mounting and adaptation material
- Sensors and cables
- Lubrication accessories

General information

2. General information

2.1 Properties of linear modules HM

HIWIN linear axes HM are compact positioning systems available with a toothed belt drive or with a ballscrew. They are based on a heavy-duty and low-wear linear guideway, combined with a sturdy and lightweight aluminium profile. Thanks to a freely adjustable stroke in millimetre increments as well as a variety of options (e.g. steel cover strip, limit switch, distance measuring system and additional carriages in various sizes), the linear axes can be individually adapted to the respective application requirements.

Advantages of linear modules HM

- Aluminium profile with large grooves for stable mounting of the linear axis on the machine frame
- Stable and reproducible mounting of the load capacity due to carriages with threaded holes and additional close-tolerance centring holes
- Convenient relubrication in any installation position thanks to grease nipples on both sides
- Limit switches can be mounted directly in a profile groove and positioned freely
- Options, such as belt cover, flexible mounting of the drive, adapters for all common motor types and distance measuring system are available as standard

2.2 Properties of linear tables HT

HIWIN linear stages HT are compact positioning systems with integrated double guide for high rigidity as well as high torque load capacity around the X-axis. Depending on the application requirements, three drive types are available: Toothed belt for dynamic applications, ballscrew for high feed forces and linear motor drive for the highest demands on speed and precision. The stroke can be freely selected in millimetre steps for all three drive types.

Advantages of linear tables HT

- High rigidity and high torque load capacity around the X-axis
- Integrated HIWIN double guide
- Very smooth running thanks to SynchMotion™ technology
- Sturdy steel cover strip, included as standard

2.3 Properties of HB bridge axes

HIWIN HB bridge axes are rigid positioning systems with a closed aluminium profile and external double guide in O-arrangement. Three drive types are available depending on the application requirements: Toothed belt for high speeds, rack and pinion drive for high positioning accuracy and linear motor drive for the highest demands on dynamics and precision. The stroke can be freely selected in millimetre increments for all three drive types.

Advantages of HB bridge axes

- Maximum rigidity and maximum moment load capacity thanks to closed aluminium profile
- HIWIN double guide in O-arrangement
- High load capacity
- High feed forces

2.4 Properties of cantilever axis HC

HIWIN cantilever axes HC are flexible linear units with an omega toothed belt drive. The compact drive block with motor and gearbox is stationary while the lightweight cantilever moves. Thanks to the sophisticated structure of the aluminium profile, the cantilever features high torsional rigidity despite its low weight and is therefore suitable for dynamic applications, especially vertical ones. The stroke can be freely selected in millimetre steps.

Advantages of cantilever axis HC

- Compact design
- High cantilever rigidity
- Low moving mass

HIWIN double axes HD are positioning modules with two toothed belt axes of the HM-B series, which are connected to each other via a synchronous shaft. The stroke and the distance between the two axes can be adjusted in millimetre steps. HIWIN double axes are particularly suitable for applications where a wide mounting surface or an additional carriage is required for support in the Y direction. They are also ideally suited as a basis for multi-axis systems.

Advantages of double axes HD

- Only minor design work needed thanks to standardised units with flexible configuration options
- Low assembly effort due to ready-to-install system
- Options, such as belt cover, flexible mounting of the drive, adapters for all common motor types and distance measuring system are available as standard

2.6 Properties of double axis systems HS2

HIWIN two-axis systems HS2 are flexible units for positioning along the X- and Y-axes. The X-axis is based on a HIWIN HD double axis. In the Y direction, you can choose between a HIWIN HM-B belt drive axis (module) or HT-B (table) for dynamic positioning. HIWIN two-axis systems are suitable for two-dimensional handling tasks.

Advantages of double axis systems HS2

- Stroke in both axial directions can be freely selected in millimetre steps
- Low assembly effort due to ready-to-install complete system
- Optionally with drive adaptation and energy chains

2.7 Properties of three-axis systems HS3

HIWIN three-axis systems HS3 are flexible units for positioning along the X- Y- and Z-axis. The X-axis is based on a HIWIN HD double axis. In the Y direction, a linear table HT-B with toothed belt drive ensures dynamic positioning.

The cantilever axis HC with omega toothed belt drive and particularly light cantilever ensures fast and precise movements in the Z direction.

Advantages of three-axis systems HS3

- Stroke in all three axial directions can be freely selected in millimetre steps
- Low assembly effort due to ready-to-install complete system
- Optionally with drive adaptation and energy chains

General information

2.8 Properties of linear gantries HSL

HIWIN linear gantries HSL are flexible units for positioning along the X- and Z-axis. The basis in the X-axis is a linear table HT-B with toothed belt drive. The cantilever axis HC with omega toothed belt drive and particularly light cantilever ensures dynamic positioning in the Z direction.

Advantages of linear gantries HSL

- Stroke in both axial directions can be freely selected in millimetre steps
- Low assembly effort due to ready-to-install complete system
- Optionally with drive adaptation and energy chains

With the HIWIN adapters for cross tables and multi-axis systems, two or more axes can be flexibly combined. This allows individual multi-axis systems to be designed quickly and easily. Forces and torques are safely transmitted through force and form closure. Centring sleeves allow for precise and reproducible connection.

Advantages of the adapters

- Quick and easy assembly of individual multi-axis systems
- Rigid and safe power transmission
- Only minor construction work needed thanks to standardised sets including mounting material

The HIWIN adapters for robot axes allow a lightweight robot and a HIWIN HT linear axis to be combined. This makes it quick and easy to design a 7th axis system. The adapters are designed so that the robots can rotate freely in the lower axis even with axes with an energy chain attached. Centring sleeves allow for precise and reproducible connection.

Advantages of the adapters

- Quick and easy robot mounting
- Only minor construction work needed thanks to standardised sets
- Including mounting material

2.11 Installation location requirements

- Temperature range: +5 °C to +40 °C
- Dry
- Non-explosive
- No vacuum

3. Calculation basis

3.1 Calculation of the required drive torque for HM-B, HM-S, HT-B, HT-S, HB-B, **HB-R and HC**

The maximum drive torque of axes HM-B, HM-S, HT-B, HT-S, HB-B, HB-R and HC is based on the technical data of the drive elements (toothed belt or ballscrew). Motors and gears must be dimensioned so that the maximum drive torque is not exceeded during operation. The required drive torque is calculated according to the formula $\underline{\mathsf{F}}$ 3.1. Basically, all individual movements that the axis goes through in a cycle should be calculated and compared with the limit values of the axis. In simplified form, for preselection of the axis, the required drive torque M_A can be calculated from the travel movement with the highest load and compared with the maximum drive torque of the axis.

F3.1
$$M_A = M_{dyn} + M_{stat} + M_{leer}$$

The dynamic drive torque $M_{\text{\scriptsize dyn}}$ is calculated from the rotational moment of inertia of the axis and the translationally moved mass.

F3.2
$$M_{dyn} = \frac{J_{rot} \times a}{10 \times r} + \frac{F_{x_dyn} \times r}{1.000}$$

F3.3
$$F_{x_dyn} = (m_{Last} + m_{Schlitten}) \times a$$

$$r = \frac{P}{2 \times \pi}$$

The static drive torque M_{stat} takes into account the drive torque required to hold the load when the axis is not horizontal.

$$M_{stat} = \frac{F_{x_stat} \times r}{1.000}$$

F3.6
$$F_{x_stat} = (m_{Last} + m_{Schlitten}) \times g \sin (A)$$

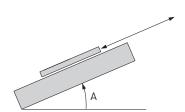


Fig. 3.1 Angle A

 M_A Required drive torque [Nm]

 $\frac{M_{dyn}}{3.2^{J}}$ Dyn. Drive torque [Nm] (see formula F_

Stat. Drive torque [Nm] (see formula F 3.5) M_{stat}

Idle torque [Nm] M_{Leer} (see technical data of axis)

Rotational moment of inertia of the axis [kqcm²] J_{rot}

(see technical data of the axis,

at HM-S/HT-S: $J_{rot} = J_{rot} 0$ -stroke + J_{rot} stroke)

Max. acceleration [m/s²]

Effective radius [mm] (see formula F 3.4) Dynamic feed force [N] (see formula F 3.3) F_{x_dyn}

Externally moving mass [kg] m_{Load} $m_{Carriage}$ Mass of the moving carriage [kg]. (see technical data of the axis)

Feed constant (HM-B/HT-B) [mm]; spindle pitch (HM-S/HT-S) [mm]

Gravitational force [N] (see formula F 3.6) Is exerted on the drive element by the moving mass when not arranged horizontally

Gravitational acceleration [m/s²] g

Angle by which the linear axis deviates horizontally in the direction of travel (see Fig. 3.1)

Calculation basis

3.2 Calculation of the required feed force for HT-L and HB-L

The required feed force F_{ν} for applications with linear tables HT-L with linear motor drive is calculated according to the formula \underline{F} 3.7. For an exact design, the travel profile must be recorded as a whole; the individual movements as well as the resulting effective force, which occurs over the entire cycle time, must be calculated. The effective force must not exceed the permanent force specified in chapter \underline{Q} . In addition, it should be noted that the peak force must not be exceeded during the complete cycle and must not be generated for longer than 1 second for thermal reasons. To preselect the axis for an application, the required maximum feed force must be matched with the maximum peak force of the motor.

F3.7
$$F_v = F_{x_dyn} + F_{x_stat} + F_l$$

F3.8
$$F_{x_dyn} = (m_{Last} + m_{Schlitten}) \times a$$

F3.9
$$F_{x_stat} = (m_{Last} + m_{Schlitten}) \times g \sin (A)$$

3.3 Lifetime calculation

The lifetime L of a linear axis is defined as the total mileage of the linear axis in kilometres until the first material fatigue occurs on the components of the linear axis (excluding wear parts).

For multi-axis systems HS, the lifetime must be calculated separately for each axis.

$3.2.1 \, Load \, application \, point \, and \, load \, distance$

The specified dynamic forces and torques are related to the linear axis carriage. The load application point is defined as the centre of the carriage surface.

The load distance 7 is the distance from the top edge of the carriage to the centre of

The load distance z is the distance from the top edge of the carriage to the centre of the profile rail guide.

F_v Required feed force [N]

 $\begin{array}{ll} F_{X_dyn} & \text{Dynamic feed force [N] (see formula } \underline{F \ 3.8}) \\ F_{X_stat} & \text{Gravitational force [N] (see formula } \underline{F \ 3.9}) \end{array}$

Is exerted on the drive element by the moving mass

when not arranged horizontally

F_l Carriage displacement force [N] (see technical data of the axis)

m_{Load} Externally moving mass [kg] m_{Carriage} Mass of the moving carriage [kg].

(see technical data of the axis)

a Max. acceleration [m/s²]

g Gravitational acceleration [m/s²]

A Angle by which the linear axis deviates horizontally in

the direction of travel (see Fig. 3.1)

$3.3.1\,\mbox{Forces}$ and torques on the linear axis

The specified maximum dynamic forces and torques for the respective axis type must not be exceeded during operation.

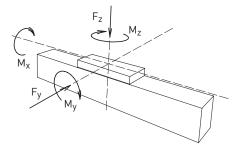
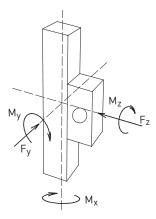



Fig. 3.2 Illustration of the forces and torques on linear axes HM, HT and HB

Calculation basis

3.3.2 Reference lifetime and load comparison factor

If there is a combined load from several forces and torques, the load comparison factor f_v is first calculated according to the formula <u>F 3.10</u>. With the load comparison factor, the application-specific lifetime can be calculated from the respective lifetime L characteristic curves. (<u>Fig. 3.4</u> to <u>Fig. 3.11</u>). At $f_v = 1$ the predefined reference lifetime is reached in each case.

The reference service life is the service life of the linear axis at a load comparison factor $f_v = 1$. The reference service life depends on the axis type and axis size and can be found in the service life characteristic curves (Fig. 3.4 to Fig. 3.11). For a load comparison factor f_v greater than 1, please contact HIWIN.

$$f_v = \frac{|F_y|}{F_{ydynmax}} + \frac{|F_z|}{F_{zdynmax}} + \frac{|M_x|}{M_{xdynmax}} + \frac{|M_y|}{M_{ydynmax}} + \frac{|M_z|}{M_{zdynmax}} \le 1$$

f_v Load comparison factor

L Lifetime [km]

Effective load in the application:

F_y Effective force in Y direction [N]

F_z Effective force in Z direction [N]

 $\begin{array}{ll} M_{x} & \quad \text{Effective torque around the X-axis [Nm]} \\ M_{y} & \quad \text{Effective torque around the Y-axis [Nm]} \end{array}$

M_z Effective torque around the Z-axis [Nm]

Permissible load data of the linear axis:

 $F_{ydynmax}$ Maximum dynamic force in Y direction [N]

F_{zdynmax} Maximum dynamic force in Z direction [N]

 $M_{xdynmax}$ Maximum dynamic moment around the X-axis [Nm]

 $\dot{M_{ydynmax}}$ Maximum dynamic moment around the Y-axis [Nm]

M_{zdvnmax} Maximum dynamic moment around the Z-axis [Nm]

3.3.3 Lifetime characteristic curve of the linear axis with toothed belt drive HM-B, HT-B, HC and the linear axis with linear motor drive HT-L

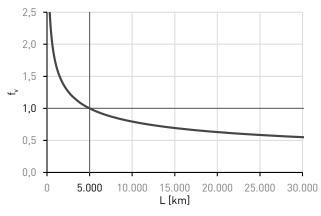


Fig. 3.4 Lifetime characteristic curve HC025B

Fig. 3.5 Lifetime characteristic curve HC040B, HT100L

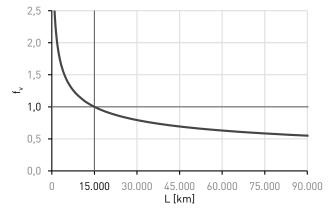


Fig. 3.6 Lifetime characteristic curve HC060B, HC080B, HC100B, HC150

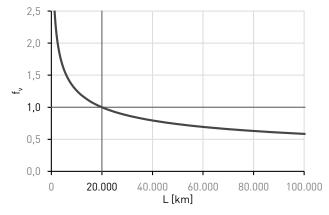
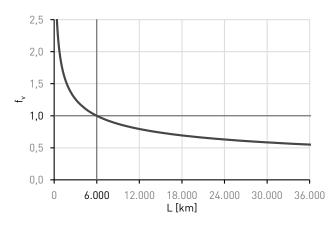



Fig. 3.7 Lifetime characteristic curve HM-B, HT-B, HT150L, HT200L, HT250L, HB250B, HB250R, HB250L

At $f_v = 1$ the predefined reference lifetime is reached in each case. Please contact HIWIN for more information.

3.3.4 Lifetime characteristic curve of linear axis with ballscrew HM-S and HT-S

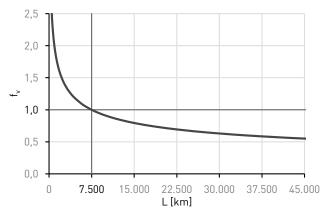


Fig. 3.8 Lifetime characteristic curve HM040S, HT100S

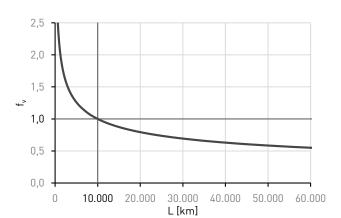
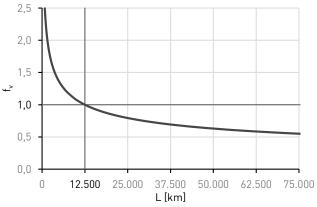



Fig. 3.9 Lifetime characteristic curve HM060S, HM080S, HT150S

 $\label{eq:Fig. 3.10} \textbf{ Lifetime characteristic curve HM120S, HT200S}$

 $Fig.\ 3.11\ \textbf{Lifetime characteristic curve HT250S}$

At $f_{\nu}=1$ the predefined reference lifetime is reached in each case. Please contact HIWIN for more information.

Calculation basis

3.4 Calculation of the support distance

The linear axes should ideally be mounted on a continuous, stable and level surface. If this is not possible, at least one support point must be provided on each side, in each case at the end of the profile. The max. permissible support distance L_{SUP} as a function of load F_{y} and F_{z} according to the following diagrams must not be exceeded. Additional support points may have to be provided to ensure this. For more information on mounting the linear axis, see the assembly instructions at hiwin.de.

3.4.1 Maximum support distance L_{SUP} of the linear modules with toothed belt drive HM-B in unsupported applications

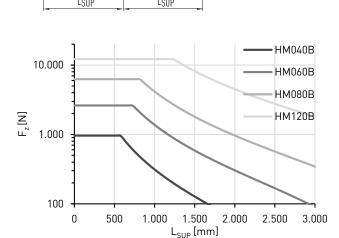


Fig. 3.12 HM-B: Maximum support distance L_{SUP} as a function of force F_z

Axis position standing horizontal:

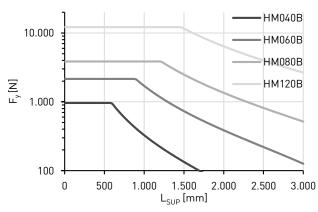
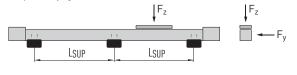



Fig. 3.13 HM-B: Maximum support distance L_{SUP} as a function of force $\boldsymbol{F_y}$

3.4.2 Maximum support distance of the linear modules with ballscrew HM-B in unsupported applications

Axis position lying horizontal:

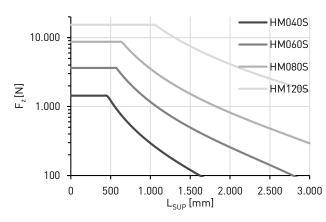
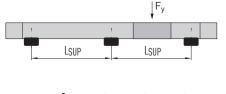



Fig. 3.14 HM-S: Maximum support distance L_{SUP} as a function of force F_z

Axis position standing horizontal:

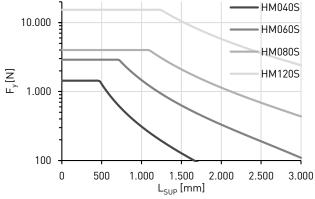
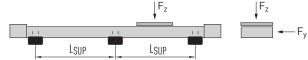
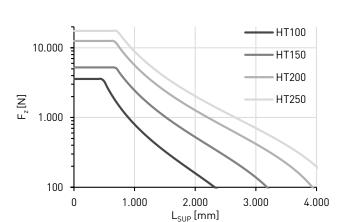
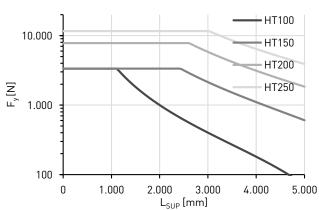
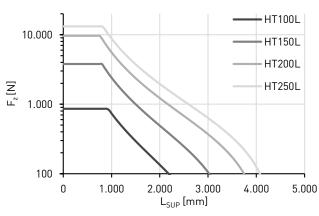



Fig. 3.15 HM-S: Maximum support distance L_{SUP} as a function of force F_y


3.4.3 Maximum support distance of linear tables HT-B, HT-S, HT-L, HB in supported applications


Axis position lying horizontal:

LSUP



LSUP

Fig. 3.16 HT-B, HT-S: Maximum support distance L_{SUP} as a function of force F_z

Fig. 3.17 HT-B, HT-S: Maximum support distance L_{SUP} as a function of force F_{ν}

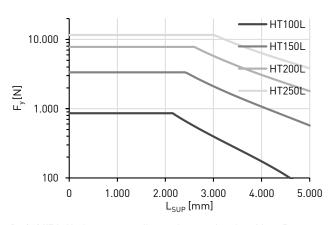
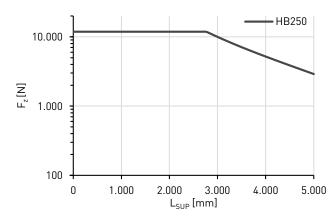



Fig. 3.18 HT-L: Maximum support distance L_{SUP} as a function of force F_z

Fig. 3.19 HT-L: Maximum support distance L_{SUP} as a function of force F_{y}

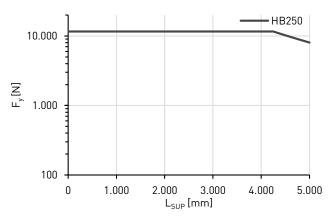


Fig. 3.20 HB: Maximum support distance L_{SUP} as a function of force F_z

Fig. 3.21 HB: Maximum support distance L_{SUP} as a function of force F_y

Product selection

4. Product selection

4.1 Linear axes

Linear axes for positioning in one axis direction.

Drive element	Typical properties	Typical load capacity [kg]	Max, feed force [N]	Max, torque M _x [Nm]	Max, travel speed [m/s]	Max, standard stroke ^{1]} [mm]	Repeatability ²⁾ [mm]	Axis	Page
Module with toothed belt	- High velocity	10	300	7.8	5.00	3,000	± 0.05	HM040B	Page 26
0	High accelerationLong stroke lengths	25	895	21	5.00	5,700	± 0.05	HM060B	Page 28
	ŭ ŭ	60	1,253	48	5.00	5,600	± 0.05	HM080B	Page 30
10		120	4,000	138	5.00	5,500	± 0.05	HM120B	Page 32
Module with ballscrew	- High positioning	10	1,271	12	0.50	1,200	± 0.02	HM040S	Page 36
	accuracy — High feed force	25	2,541	28	0.80	2,950	± 0.02	HM060S	Page 38
	High drive rigidity	60	3,186	67	1.00	4,050	± 0.02	HM080S	Page 40
		120	6,592	139	1.60	4,700	± 0.02	HM120S	Page 42
able with toothed belt	- High velocity	40	813	93	5.00	5,600	± 0.05	HT100B	Page 46
	High accelerationLong stroke lengths	80	1,300	246	5.00	5,550	± 0.05	HT150B	Page 48
	 High torque load 	150	3,000	852	5.00	5,500	± 0.05	HT200B	Page 50
	capacity	250	4,500	1,496	5.00	5,500	± 0.05	HT250B	Page 52
able with ballscrew	- High positioning	40	2,541	139	0.80	3,000	± 0.02	HT100S	Page 56
	accuracy High feed force High drive rigidity High torque load capacity	80	3,186	341	1.00	4,750	± 0.02	HT150S	Page 58
		150	3,535	1,073	1.25	4,850	± 0.02	HT200S	Page 60
		250	5,300	1,750	1.60	4,750	± 0.02	HT250S	Page 62
Table with linear motor	 Maximum positioning 	20	224	35	5.00	5,500	± 0.005	HT100L	Page 66
	accuracy - Maximum dynamics - Wear-free drive - Largest stroke lengths	80	868	201	5.00	5,450	± 0.005	HT150L	Page 68
		150	1,535	721	5.00	5,400	± 0.005	HT200L	<u>Page 70</u>
		250	2,469	1,249	4.50	5,450	± 0.005	HT250L	Page 72
Bridge axis with	Maximum rigidity and	350	5,775	1,674	5.00	5,280	± 0.05	HB250B	Page 76
oothed belt	maximum torque load capacity High speed High feed force		3,3	,,,,,		3,230	3.00		. 530 70
Bridge axis with rack and pinion drive	Maximum rigidity and maximum torque load capacity High speed High positioning accuracy	350	4,300	1,371	3.00	5,160	± 0.05	HB250R	Page 80
Bridge axis with linear motor	Maximum rigidity and maximum torque load capacity Highest positioning accuracy High dynamics	350	3,292	1,125	4.5	5,160	± 0.005	HB250L	Page 84

Cantilever axis with toothed belt	High velocity Compact design	2	241	2.8	5.00	300	± 0.05	HC025B	Page 88
		8	404	9.8	5.00	500	± 0.05	HC040B	<u>Page 90</u>
		16	997	27	5.00	800	± 0.05	HC060B	Page 92
		30	1,330	63	5.00	1,200	± 0.05	HC080B	Page 94
		60	2,667	91	5.00	1,800	± 0.05	HC100B	Page 96
		80	4,000	446	5.00	2,000	± 0.05	HC150B	<u>Page 98</u>
Cantilever axis with rack and pinion drive	Compact designHigh feed forceHigh rigidity	80	4,300	446	3.00	2,000	± 0.05	HC150R	Page 102
Double axis with	- High torque load	25	450	-	5.00	3,000	± 0.1	HD1	<u>Page 106</u>
toothed belts	capacity - Screw-on surface width	63	1,343	-	5.00	5,700	± 0.1	HD2	<u>Page 107</u>
	 Synchronous axis movement 	150	1,880	-	5.00	5,600	± 0.1	HD3	Page 108
	oromont	300	6,000	-	5.00	5,500	± 0.1	HD4	<u>Page 109</u>

¹⁾ Restrictions due to energy chain, installation position and/or distance measuring system may apply. Longer strokes on request.
2) Repeatability depends on the selected distance measuring system (see chapter 21 from page 156)
3) Peak force of the drive

 $^{^{4]}}$ Applies to vertical installation position; for max, stroke for horizontal installation, see chapter $\underline{13}$

Product selection

4.2 Multi-axis systems

 $\overline{\mbox{Axis}}$ systems for positioning in two or three axis directions.

System	Typical properties	Typical load capacity [kg]	Max. travel speed [m/s]	Basis	Working space [mm] ^{1) 2)}	Axis	Page :
Two-axis system	Two-dimensional movements	5	5	X: HD1 Y: HM040B	X: 3000 Y: 1350	HS21-D-M	<u>Page 112</u>
	Compact systemLarge working space	20	5	X: HD1 Y: HT100B	X: 3000 Y: 1600	HS21-D-T	<u>Page 114</u>
		12	5	X: HD2 Y: HM060B	X: 5554 Y: 1950	HS22-D-M	<u>Page 116</u>
		40	5	X: HD2 Y: HT150B	X: 5554 Y: 1950	HS22-D-T	<u>Page 118</u>
		30	5	X: HD3 Y: HM080B	X: 5453 Y: 2150	HS23-D-M	<u>Page 120</u>
		80	5	X: HD3 Y: HT200B	X: 5453 Y: 2200	HS23-D-T	<u>Page 122</u>
		130	5	X: HD4 Y: HT250B	X: 5256 Y: 2100	HS24-D-T	<u>Page 124</u>
Three-axis system	 Three-dimensional movements Compact system Large working space 	2	5	X: HD1 Y: HT100B Z: HC025B	X: 3000 Y: 1600 Z: 300	HS31-D-T-C	Page 128
		8	5	X: HD2 Y: HT150B Z: HC040B	X: 5554 Y: 1950 Z: 500	HS32-D-T-C	Page 130
		16	5	X: HD3 Y: HT200B Z: HC060B	X: 5453 Y: 2150 Z: 800	HS33-D-T-C	Page 132
		30	5	X: HD4 Y: HT250B Z: HC080B	X: 5256 Y: 2100 Z: 1200	HS34-D-T-C	<u>Page 134</u>
Linear gantry	- Two-dimensional movements	2	5	X: HT100B Z: HC025B	X: 5552 Z: 300	HSL1-T-C	<u>Page 138</u>
	Compact systemLarge working space	8	5	X: HT150B Z: HC040B	X: 5483 Z: 500	HSL2-T-C	<u>Page 140</u>
		16	5	X: HT200B Z: HC060B	X: 5414 Z: 800	HSL3-T-C	<u>Page 142</u>
		30	5	X: HT250B Z: HC080B	X: 5397 Z: 1200	HSL4-T-C	<u>Page 144</u>

¹⁾ Restrictions due to energy chain may apply. Larger strokes available on request.
2) Depends on selected payload and dynamic response. For comprehensive application advice, please contact HIWIN.

Linear modules HM-B

5. Linear modules HM-B

5.1 Properties of linear modules HM-B with toothed belt drive

The HIWIN linear axes with toothed belt drive are compact positioning modules that can be used flexibly. They are ideal in particular for applications requiring high dynamic responses and high speeds. In addition, large travel distances can be realised with these linear axes.

Cleanroom-compatible linear motor axes HT-L up to ISO class 2 are available on request.

Linear guideway

High-quality HIWIN linear guideways safely transfer forces and torques from the carriage to the axis profile. Two blocks are used per carriage, which are guided on a high-precision profile rail. The SynchMotion™ technology with ball chain also ensures good synchronisation and smooth running in the HM060B, HM080B and HM120B sizes.

Drive connection

Thanks to its symmetrical design, the HIWIN toothed belt axis allows motors and gears to be mounted on all four sides of the drive blocks.

Additional journals, which are available as accessories (see <u>Page 199</u>), can be used to mount additional drives and outputs at any point.

Toothed belt

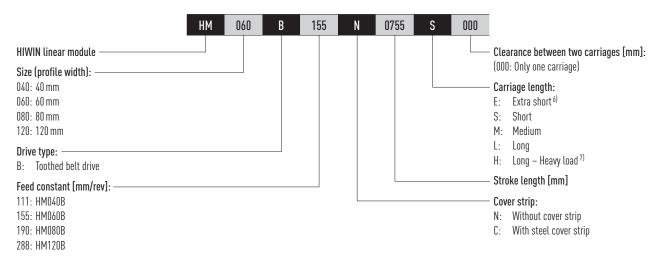
The toothed belt with modern high performance profiles (HTD shape) and reinforced steel tension members enables high power transmission while offering high skip resistance.

Cover strip

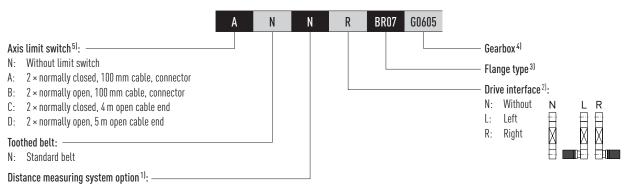
The steel cover strip prevents dirt and dust from entering the axis interior. In addition, the cover strip allows the axes to be used in areas with coarse, sharp-edged or hot foreign bodies. The magnetic strips integrated in the axis profile hold the belt securely in position and increase the sealing effect.

Carriage

HIWIN toothed belt modules are available with three different carriage lengths depending on the size and dimensions of the load to be transported. In order to ensure ideal, reproducible alignment of the adjacent structure, each threaded hole has an additional bore hole via which the load capacity can be fixed with centring sleeves. You will find the matching centring sleeves in the accessories on Page 192.


Lubrication

For convenient maintenance of the linear axis, a separate grease nipple is fitted to the left and right of the carriage for each lubrication point. This ensures optimum accessibility for relubrication, even under difficult installation conditions.



5.2 Order code for linear modules HM-B

Continuation, order code for linear modules HM-B

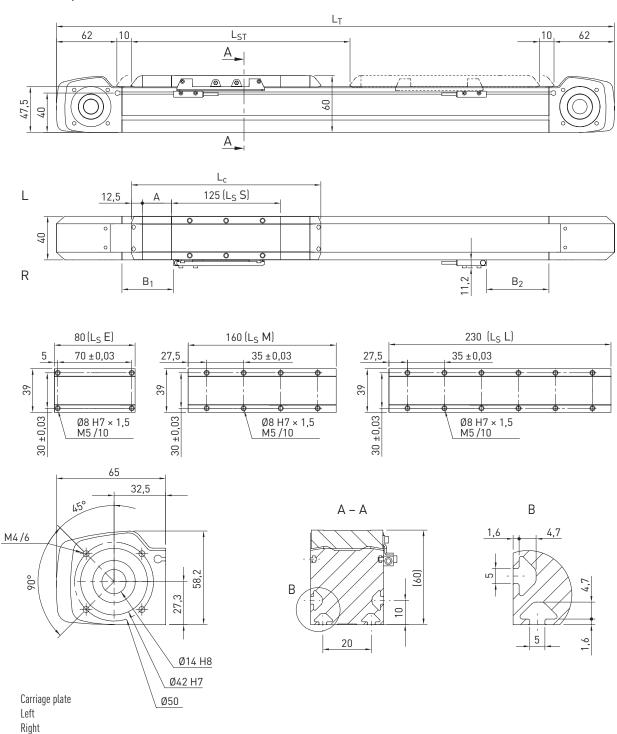
- N: Without distance measuring system
- A: HIWIN MAGIC, analogue, 1 V_{SS} sin/cos, 5 m open cable end
- D: HIWIN MAGIC, digital, TTL 5 V, 5 m open cable end

¹⁾ More detailed information in chapter 21 from page 156 or in the "HIWIN MAGIC Distance Measuring Systems" assembly instructions".

²⁾ If no drive interface is selected, the order code ends after this digit.

^{3]} You can find all flange types in <u>Table 22.1 from page 160</u>. If no gearbox is selected, the order code ends after this digit.

⁴⁾ You can find the right gearbox for the HIWIN axes in section <u>22.1.5.5 from page 170</u>.

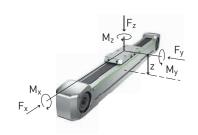

 $^{^{5)}}$ Additional reference switches on request.

^{6]} Only available for HM040B.

⁷⁾ Only available for HM120B.

Linear modules HM-B

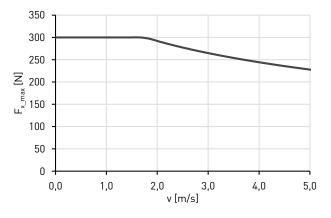
5.3 Dimensions and specifications of HM040B

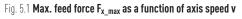

Table 5.1 HM040B dimensions										
	Variant without o	Variant without cover				Variant with cover				
Sledge type	E	S	М	L	S	М	L			
Total carriage length L _c [mm]	105	150	185	255	230	265	335			
Cover strip deflection A [mm]	0	0	0	0	40	40	40			
Switch distance B ₁ [mm]	23	24	24	24	64	64	64			
Switch distance B ₂ [mm]	23	9	44	114	49	84	154			
Max. stroke length L _{ST} [mm]	3,000	3,000	3,000	3,000	3,000	3,000	3,000			
Total length L _T [mm]	$L_{T} = L_{ST} + 249$	$L_{T} = L_{ST} + 294$	$L_T = L_{ST} + 329$	$L_T = L_{ST} + 399$	$L_{T} = L_{ST} + 374$	$L_{T} = L_{ST} + 409$	$L_{T} = L_{ST} + 479$			

 L_{s}

L R

Table 5.2 Load data										
	Permis	sible lo	ad data		Theoretical load data					
Lifetime refer- ence value	20,000 km				100 km					
Sledge type	E	S	М	L	E	S	М	L		
F _{ydynmax} 1) [N]	665	963	963	963	5,056	7,318	7,318	7,318		
F _{zdynmax} 1) [N]	665	963	963	963	5,056	7,318	7,318	7,318		
M _{xdynmax} [Nm]	5.4	7.8	7.8	7.8	41	59	59	59		
M _{ydynmax} [Nm]	4.2	35	51	85	32	263	392	648		
M _{zdynmax} [Nm]	4.2	35	51	85	32	263	392	648		
Load distance z [mm]	34	34	34	34	34	34	34	34		


¹⁾ Force must only act free of torque


Table 5.3 General technical data					
Repeatability [mm]	± 0.05				
Max. feed force $F_{x_{max}}[N]$	300				
Max. speed [m/s]	5				
Max. acceleration [m/s ²]	30				
Max. drive torque M _{A_max} [Nm]	5.3				
Typical load capacity [kg]	10 ¹⁾				
Maximum total length [mm]	3,479				
Area moment of inertia of profile cross section I_x [mm ⁴]	117,795				
Area moment of inertia of profile cross section I_y [mm 4]	122,922				

¹⁾ Carriage type E: 4 kg	
ourriage type L. + ng	

Table 5.4 Guide						
Sledge type	E	S/M/L				
Type of carriage	MGN15H × 1	MGN15C × 2				
Static load rating C ₀ [N]	9,110 × 1	5,590 × 2				
Dynamic load rating C _{dyn 50 km} [N]	6,370 × 1	4,610 × 2				

Table 5.5 Drive	
Drive element	b15HTD3
Feed constant [mm/U]	111
Toothed belt effective diameter [mm]	35.332

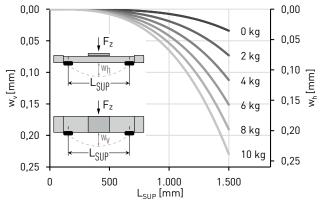
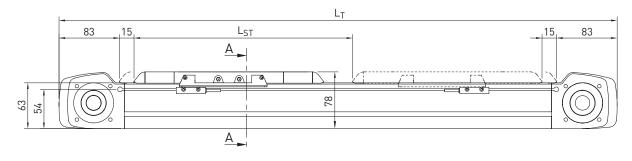
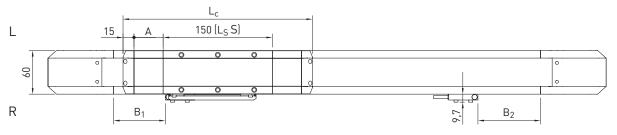
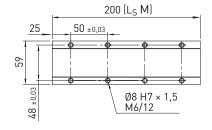
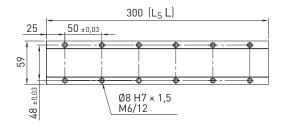


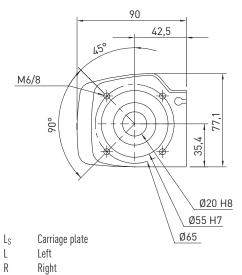
Fig. 5.2 Deflection w over unsupported axis length L_{SUP} under load capacity $\textbf{F}_{\textbf{z}}$

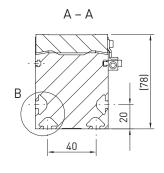

Table 5.6 Mechanical properties										
	Variant without cover				Variant with cover					
Sledge type	E	S	М	L	S	M	L			
Mass of the carriage [kg]	0.25	0.35	0.41	0.52	0.42	0.48	0.59			
Mass at 0-stroke ²⁾ [kg]	1.21	1.45	1.62	1.95	1.82	1.99	2.32			
Mass per 1 m stroke [kg/m]	3.10	3.10	3.10	3.10	3.16	3.16	3.16			
J _{rot.} 1] [kgcm ²]	0.34	0.34	0.34	0.34	0.34	0.34	0.34			
Idle torque at 0-stroke [Nm]	0.15	0.18	0.18	0.18	0.25	0.25	0.25			


¹⁾ Rotational moment of inertia


²⁾ The values apply to axes with one carriage. For axes with 2 carriages, add the following: Mass of carriage + mass per 1 m stroke x (Clearance between the carriages (in m) + carriage length $L_{\mathbb{C}}$ (in m))


Linear modules HM-B


5.4 Dimensions and specifications of HM060B



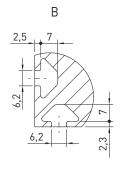
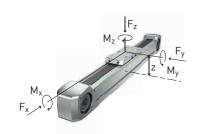


Table 5.7 HM060B dimensions								
	Variant without cove	er		Variant with cover	Variant with cover			
Sledge type	S	М	L	S	М	L		
Total carriage length L _c [mm]	180	230	330	260	310	410		
Cover strip deflection A [mm]	0	0	0	40	40	40		
Switch distance B ₁ [mm]	25	25	25	65	65	65		
Switch distance B ₂ [mm]	40	90	190	80	130	230		
Max. stroke length L _{ST} [mm]	5,704	5,654	5,554	5,624	5,574	5,474		
Total length L _T [mm]	$L_T = L_{ST} + 376$	$L_T = L_{ST} + 426$	$L_T = L_{ST} + 526$	L _T = L _{ST} + 456	$L_{T} = L_{ST} + 506$	$L_T = L_{ST} + 606$		



QEH15CA × 2

15,280 × 2 12,530 × 2

49:338

Table 5.8 Load data							
	Permissit	ole load da	ta	Theoretical load data			
Lifetime refer- ence value	20,000 km			100 km			
Sledge type	S	М	L	S	М	L	
F _{ydynmax} 1) [N]	2,152	2,152	2,152	19,890	19,890	19,890	
F _{zdynmax} 1) [N]	2,616	2,616	2,616	19,890	19,890	19,890	
M _{xdynmax} [Nm]	21	21	21	156	156	156	
M _{ydynmax} [Nm]	98	164	294	746	1,243	2,238	
M _{zdynmax} [Nm]	81	135	242	746	1,243	2,238	
Load distance z [mm]	45,5	45,5	45,5	45,5	45,5	45,5	

¹⁾ Force must only act free of torque

Table 5.9 General technical data				
Repeatability [mm]	± 0.05			
Max. feed force $F_{x_{max}}[N]$	895			
Max. speed [m/s]	5			
Max. acceleration [m/s ²]	30			
Max. drive torque M _{A_max} [Nm]	22			
Typical load capacity [kg]	25			
Maximum total length 1] [mm]	6,080			
Area moment of inertia of profile cross section I_x [mm ⁴]	507,521			
Area moment of inertia of profile cross section I_y [mm 4]	625,920			

Table 5.11 Drive	
Drive element	b25HTD5
Feed constant [mm/U]	155

Table 5.10 **Guide Type of carriage**

Static load rating C_0 [N]

Dynamic load rating $C_{dyn\ 50\ km}$ [N]

Toothed belt effective diameter [mm]

¹⁾ Long axes on request

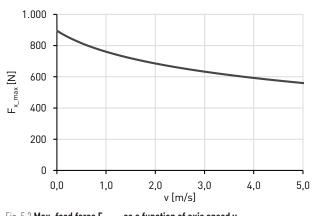
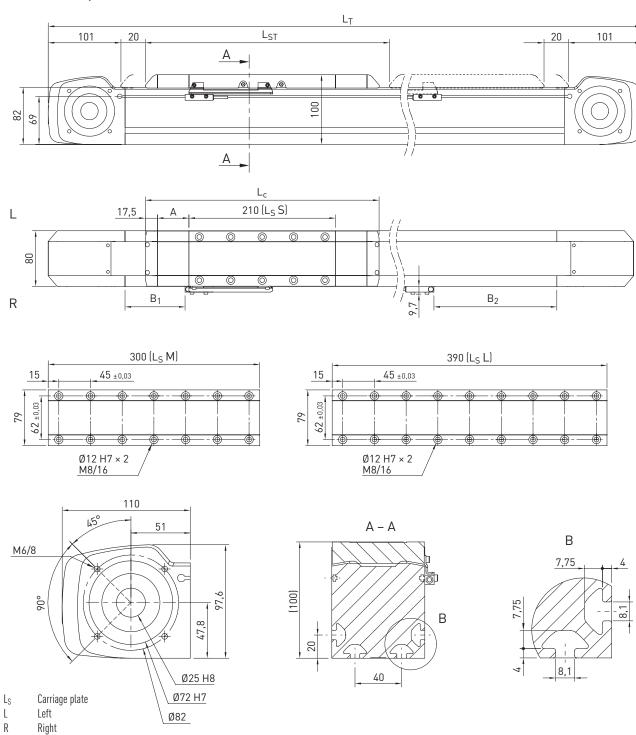


Fig. 5.3 Max. feed force $\mathbf{F}_{\mathbf{x}_\mathbf{max}}$ as a function of axis speed \mathbf{v}

Fig. 5.4 Deflection w over unsupported axis length L_{SUP} under load capacity $\textbf{F}_{\textbf{z}}$


Table 5.12 Mechanical properties								
	Variant without cover			Variant with cover				
Sledge type	S	М	L	S	М	L		
Mass of the carriage [kg]	0.79	0.93	1.22	0.89	1.03	1.32		
Mass at 0-stroke ²⁾ [kg]	3.48	3.90	4.74	4.07	4.50	5.34		
Mass per 1 m stroke [kg/m]	5.48	5.48	5.48	5.58	5.58	5.58		
J _{rot.} ¹⁾ [kgcm ²]	1.92	1.92	1.92	1.92	1.92	1.92		
Idle torque at O-stroke [Nm]	0.47	0.47	0.47	0.80	0.80	0.80		

¹⁾ Rotational moment of inertia

The values apply to axes with one carriage. For axes with 2 carriages, add the following: Mass of carriage + mass per 1 m stroke x (Clearance between the carriages (in m) + carriage length L_c (in m))

Linear modules HM-B

5.5 Dimensions and specifications of HM080B

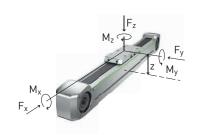


Table 5.13 HM080B dimensions								
	Variant without cove	Variant without cover			Variant with cover			
Sledge type	S	М	L	S	М	L		
Total carriage length L _c [mm]	245	335	425	335	425	515		
Cover strip deflection A [mm]	0	0	0	45	45	45		
Switch distance B ₁ [mm]	23	23	23	68	68	68		
Switch distance B ₂ [mm]	113	203	293	158	248	338		
Max. stroke length L _{ST} [mm]	5,633	5,543	5,453	5,543	5,453	5,363		
Total length L _T [mm]	L _T = L _{ST} + 487	$L_{T} = L_{ST} + 577$	$L_{T} = L_{ST} + 667$	$L_{T} = L_{ST} + 577$	L _T = L _{ST} + 667	$L_T = L_{ST} + 757$		

Right

Table 5.14 Load data								
	Permissil	ole load da	ta	Theoretical load data				
Lifetime refer- ence value	20,000 km			100 km				
Sledge type	S	М	L	S	М	L		
F _{ydynmax} 1) [N]	3,855	3,855	3,855	47,622	47,622	47,622		
F _{zdynmax} 1) [N]	6,264	6,264	6,264	47,622	47,622	47,622		
M _{xdynmax} [Nm]	48	48	48	366	366	366		
M _{ydynmax} [Nm]	357	639	921	2,714	4,857	7,000		
M _{zdynmax} [Nm]	220	393	567	2,714	4,857	7,000		
Load distance z [mm]	53.4	53.4	53.4	53.4	53.4	53.4		

¹⁾ Force must only act free of torque

Table 5.15 General technical data				
Repeatability [mm]	± 0.05			
Max. feed force $F_{x_{max}}[N]$	1,253			
Max. speed [m/s]	5			
Max. acceleration [m/s ²]	30			
Max. drive torque M _{A_max} [Nm]	38			
Typical load capacity [kg]	60			
Maximum total length 1] [mm]	6,120			
Area moment of inertia of profile cross section I_x [mm ⁴]	1,522,057			
Area moment of inertia of profile cross section I_y [mm 4]	2,081,321			

¹⁾ Long axes on request

Table 5.16 Guide	
Type of carriage	QHH20CA × 2
Static load rating C_0 [N]	33,860 × 2
Dynamic load rating C _{dyn 50 km} [N]	30,000 × 2

Table 5.17 Drive	
Drive element	b35HTD5
Feed constant [mm/U]	190
Toothed belt effective diameter [mm]	60.479

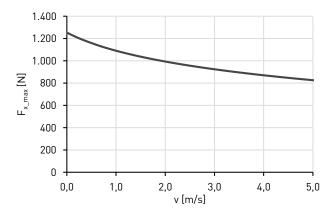


Fig. 5.5 Max. feed force $\textbf{F}_{\textbf{x}_\text{max}}$ as a function of axis speed v

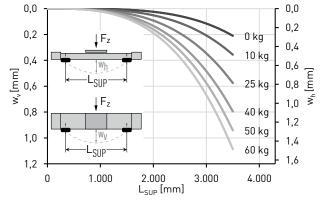
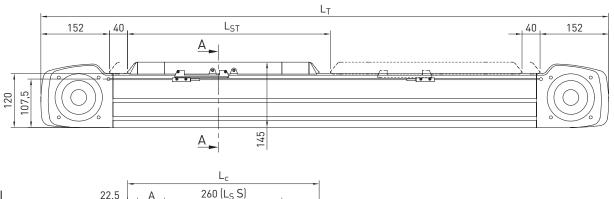
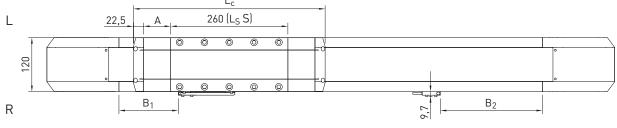
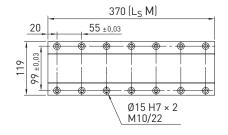


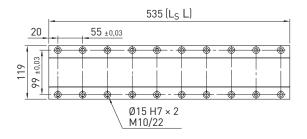
Fig. 5.6 Deflection w over unsupported axis length L_{SUP} under load capacity $\textbf{F}_{\textbf{z}}$

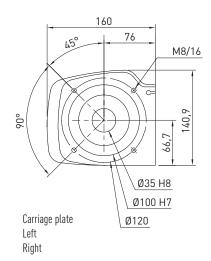
31

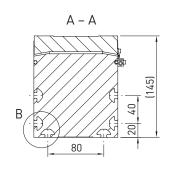

Table 5.18 Mechanical properties								
	Variant with	Variant without cover			Variant with cover			
Sledge type	S	М	L	S	М	L		
Mass of the carriage [kg]	1.61	2.02	2.43	1.81	2.22	2.63		
Mass at 0-stroke ^{2]} [kg]	7.46	8.76	10.07	8.72	10.03	11.34		
Mass per 1 m stroke [kg/m]	9.94	9.94	9.94	10.08	10.08	10.08		
J _{rot.} 1) [kgcm ²]	6.03	6.03	6.03	6.03	6.03	6.03		
Idle torque at O-stroke [Nm]	1.20	1.20	1.20	1.30	1.30	1.30		

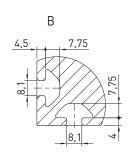

^{1]} Rotational moment of inertia

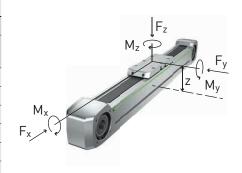

²⁾ The values apply to axes with one carriage. For axes with 2 carriages, add the following: Mass of carriage + mass per 1 m stroke x (Clearance between the carriages (in m) + carriage length $L_{\mathbb{C}}$ (in m))


Linear modules HM-B


5.6 Dimensions and specifications of HM120B






Table 5.19 HM120B dimensions								
	Variant without cover			Variant with cover				
Sledge type	S	М	L/H	S	М	L/H		
Total carriage length L _c [mm]	305	415	580	425	535	700		
Cover strip deflection A [mm]	0	0	0	60	60	60		
Switch distance B ₁ [mm]	71.5	71.5	71.5	131.5	131.5	131.5		
Switch distance B ₂ [mm]	166.5	276.5	441.5	226.5	336.5	501.5		
Max. stroke length L _{ST} [mm]	5,531	5,421	5,256	5,411	5,301	5,136		
Total length L _T [mm]	$L_T = L_{ST} + 689$	$L_{T} = L_{ST} + 799$	$L_T = L_{ST} + 964$	$L_{T} = L_{ST} + 809$	$L_T = L_{ST} + 919$	$L_{T} = L_{ST} + 1,084$		

 $\mathsf{L}_{\mathbb{S}}$

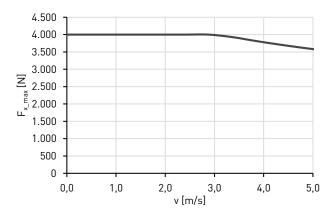
L R

Table 5.20 Load data									
	Permissible load data			Theoretical load data					
Lifetime refer- ence value	20,000 km			100 km					
Sledge type	S	М	L	Н	S	М	L	Н	
F _{ydynmax} 1) [N]	12,165	12,165	12,165	12,165	92,482	92,482	92,482	111,626	
F _{zdynmax} 1) [N]	12,165	12,165	12,165	14,683	92,482	92,482	92,482	111,626	
M _{xdynmax} [Nm]	110	110	110	138	836	836	836	1,047	
M _{ydynmax} [Nm]	900	1,569	2,573	2,937	6,844	11,930	19,560	22,325	
M _{zdynmax} [Nm]	900	1,569	2,573	2,433	6,844	11,930	19,560	22,325	
Load distance z [mm]	77	77	77	77	77	77	77	77	

¹⁾ Force must only act free of torque

Table 5.21 General technical data					
Repeatability [mm]	± 0.05				
Max. feed force $F_{x_{max}}[N]$	4,000				
Max. speed [m/s]	5				
Max. acceleration [m/s ²]	30				
Max. drive torque M _{A_max} [Nm]	183				
Typical load capacity [kg]	120				
Maximum total length 1] [mm]	6,220				
Area moment of inertia of profile cross section I_{χ} [mm ⁴]	6,791,541				
Area moment of inertia of profile cross section I _y [mm ⁴]	9,553,626				

Type of carriage	QHW30CC × 2	QHW30HC × 2
Static load rating C ₀ [N]	66,340 × 2	88,450 × 2
Dynamic load rating C _{dyn 50 km} [N]	58,260 × 2	70,320 × 2
Table 5.23 Drive		


S/M/L

Н

Table 5.22 **Guide**Sledge type

Table 5.23 Drive	
Drive element	b60HTD8
Feed constant [mm/U]	288
Toothed belt effective diameter [mm]	91.673

¹⁾ Long axes on request

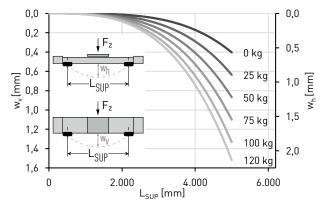


Fig. 5.7 Max. feed force $\textbf{F}_{\textbf{x}_\text{max}}$ as a function of axis speed v

Fig. 5.8 Deflection w over unsupported axis length L_{SUP} under load capacity $\textbf{F}_{\textbf{z}}$

Table 5.24 Mechanical properties									
	Variant wi	Variant without cover			Variant wi	Variant with cover			
Sledge type	S	М	L	Н	S	М	L	Н	
Mass of the carriage [kg]	5.13	6.26	7.95	8.72	5.61	6.73	8.42	9.20	
Mass at 0-stroke ²⁾ [kg]	21.84	25.28	30.44	31.22	25.08	28.54	33.72	34.50	
Mass per 1 m stroke [kg/m]	21.03	21.03	21.03	21.03	21.21	21.21	21.21	21.21	
J _{rot.} 1) [kgcm ²]	42.42	42.42	42.42	46.42	42.42	42.42	42.42	46.42	
Idle torque at O-stroke [Nm]	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	

¹⁾ Rotational moment of inertia

²⁾ The values apply to axes with one carriage. For axes with 2 carriages, add the following: Mass of carriage + mass per 1 m stroke x (Clearance between the carriages (in m) + carriage length L_c (in m))

Linear modules HM-S

6. Linear modules HM-S

6.1 Properties of linear modules HM-S with ballscrew

The HIWIN linear axes with ballscrew are compact positioning modules that can be used flexibly. They are especially suitable for applications where high loads have to be moved with high precision.

Linear guideway

High-quality HIWIN linear guideways safely transfer forces and torques from the carriage to the axis profile. Two blocks are used per carriage, which are guided on a high-precision profile rail. The SynchMotion™ technology with ball chain also ensures good synchronisation and smooth running in the HM060S, HM080S and HM120S sizes.

Motor connection and belt drive

The motor adapters are made up of several parts that offer an extremely flexible drive interface for attaching and modifying the drive installation. Optionally, a belt transmission can be used to turn the motor attachment through 180°, reducing the total length to a considerable extent.

Ballscrew

The integrated HIWIN ballscrews ensure precise positioning thanks to their high pitch accuracy and rigidity. Different shaft pitches are available for each size in order to optimally meet the requirements for feed force and dynamics.

Cover strip

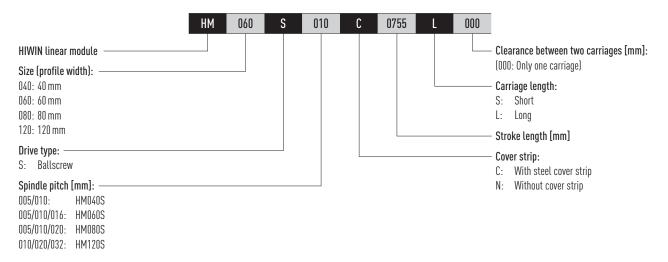
The steel cover strip prevents dirt and dust from entering the axis interior. In addition, the cover strip allows the axes to be used in areas with coarse, sharp-edged or hot foreign bodies. The magnetic strips integrated in the axis profile hold the belt securely in position and increase the sealing effect.

Carriage

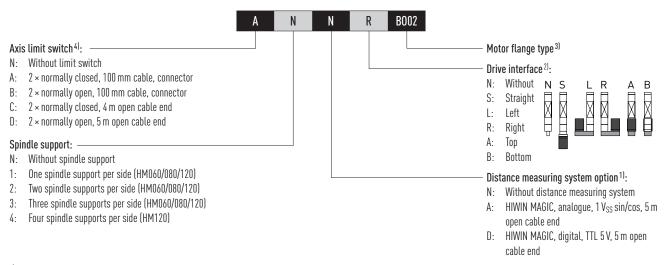
HIWIN spindle axes are available with two different carriage lengths depending on the size and dimensions of the load to be transported. In order to ensure ideal, reproducible alignment of the adjacent structure, each threaded hole has an additional bore hole via which the load capacity can be fixed with centring sleeves. You will find the matching centring sleeves in the accessories on Page 192.

Lubrication

For convenient maintenance of the linear axis, a separate grease nipple is fitted to the left and right of the carriage for each lubrication point. This ensures optimum accessibility for relubrication, even under difficult installation conditions.



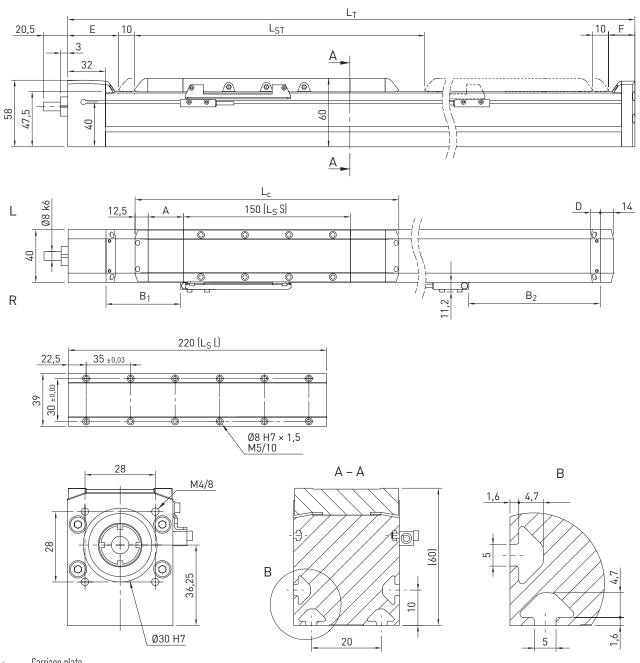
Spindle support


In applications with long travel distances and high velocity, the critical speed of the shaft is quickly reached, meaning an appropriate support is required to prevent the shaft from swinging up. In HIWIN spindle drive axes, up to three travelling shaft supports can be installed on each side of the carriage. This allows driving at full speed, even with large strokes.

6.2 Order code for linear modules HM-S

Continuation, order code for linear modules HM-S

¹⁾ More detailed information in chapter 21 from page 156 or in the "HIWIN MAGIC Distance Measuring Systems" assembly instructions".


²⁾ If no drive interface is selected, the order code ends after this digit.

³⁾ You can find all flange types in <u>Table 22.15 from page 175</u>. If no gearbox is selected, the order code ends after this digit.

⁴⁾ Additional reference switches on request.

Linear modules HM-S

6.3 Dimensions and specifications of HM040S

 $L_S \qquad \quad \text{Carriage plate}$

L Left

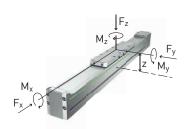

R Right

Table 6.1 HM040S dimensions							
	Variant without cover		Variant with cover				
Sledge type	S	L	S	L			
Total carriage length L _c [mm]	175	245	255	325			
Cover strip deflection A [mm]	0	0	40	40			
Switch distance B ₁ [mm]	33.5	33.5	83.5	83.5			
Switch distance B ₂ [mm]	42.5	112.5	92.5	162.5			
Terminal box D [mm]	0	0	10	10			
End position at mechanical zero E [mm]	37.5	37.5	47.5	47.5			
End position at mechanical zero F [mm]	19.5	19.5	29.5	29.5			
Max. stroke length L _{ST} [mm]	1,231	1,161	1,131	1,061			
Total length L _T [mm]	$L_T = L_{ST} + 253$	$L_{T} = L_{ST} + 323$	$L_T = L_{ST} + 353$	$L_{T} = L_{ST} + 423$			

Table 6.2 Load data					
	Permissible lo	ad data	Theoretical load data		
Lifetime refer- ence value	6,000 km		100 km		
Sledge type	S	L	S	L	
F _{ydynmax} 1) [N]	1.438	1.438	7.318	7.318	
F _{zdynmax} 1) [N]	1.438	1.438	7.318	7.318	
M _{xdynmax} [Nm]	12	12	59	59	
M _{ydynmax} [Nm]	80	130	406	662	
M _{zdynmax} [Nm]	80	130	406	662	
Load distance z [mm]	40	40	40	40	

¹⁾ Force must only act free of torque

Table 6.4 Guide	
Type of carriage	MGN15C × 2
Static load rating C ₀ [N]	5,590 × 2
Dynamic load rating C _{dyn 50 km} [N]	4,610 × 2

Table 6.3 General technical data	
Repeatability [mm]	± 0.02
Max. acceleration [m/s ²]	15
Typical load capacity [kg]	10
Maximum total length [mm]	1,484
Area moment of inertia of profile cross section I_x [mm ⁴]	111,032
Area moment of inertia of profile cross section I _y [mm ⁴]	116,769

Table 6.5 Drive		
	Spindle	lead
	5 mm	10 mm
Spindle diameter [mm]	12	
Axial play [mm]	0.02	
Max. feed force $F_{x_{max}}[N]$	1,271	792
Max. speed [m/s]	0.25	0.50
Max. drive torque M _{A_max} [Nm]	1.16	1.41
Static load rating ballscrew C ₀ [N]	12,000	6,500
Dynamic load rating ballscrew C_{dyn} [N]	6,900	4,300

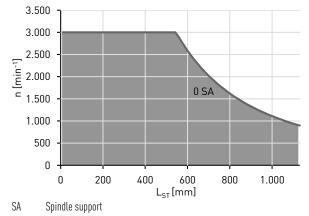


Fig. 6.1 Critical speed n over axis stroke length L_{ST}

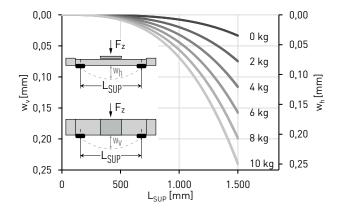
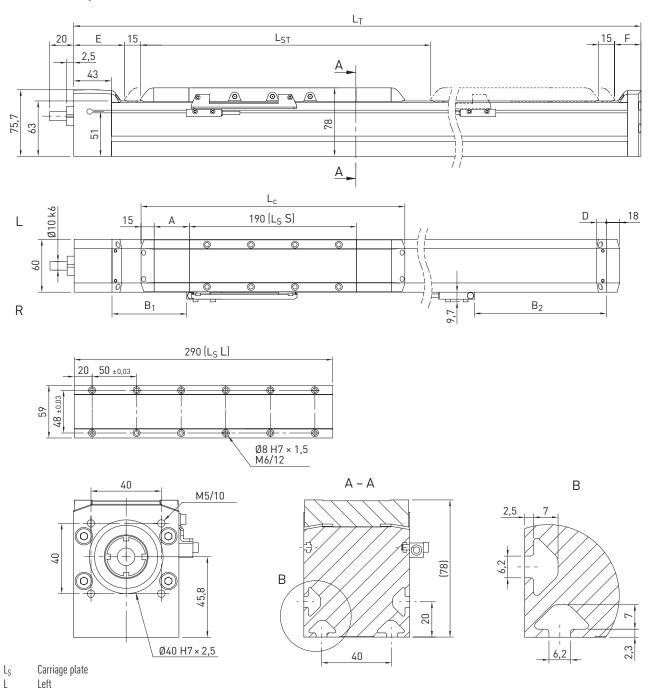


Fig. 6.2 Deflection w over unsupported axis length L_{SUP} under load capacity F_z

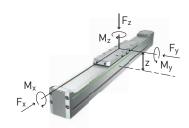

Table 6.6 Mechanical properties								
	Variant w	ithout cover			Variant w	ith cover		
Sledge type	S		L		S		L	
Spindle pitch [mm]	5	10	5	10	5	10	5	10
Mass of the carriage [kg]	0.44	0.44	0.56	0.56	0.51	0.51	0.63	0.63
Mass at O-stroke ²⁾ [kg]	1.58	1.57	1.95	1.95	2.06	2.05	2.43	2.43
Mass per 1 m stroke [kg/m]	3.65	3.65	3.65	3.65	3.71	3.71	3.71	3.71
J _{rot.} ¹⁾ at 0-stroke [kgcm²]	0.07	0.07	0.08	0.08	0.08	0.08	0.09	0.09
J _{rot.} ¹⁾ Per 1 m stroke [kgcm²/m]	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16
Idle torque at O-stroke [Nm]	0.15	0.15	0.15	0.15	0.20	0.20	0.20	0.20

¹⁾ Rotational moment of inertia

²⁾ The values apply to axes with one carriage. For axes with 2 carriages, add the following: Mass of carriage + mass per 1 m stroke x (Clearance between the carriages (in m) + carriage length $L_{\mathbb{C}}$ (in m))

Linear modules HM-S

6.4 Dimensions and specifications of HM060S


Table 6.7 HM060S dimensions						
	Variant without cover		Variant with cover			
Sledge type	S	L	S	L		
Total carriage length L _c [mm]	220	320	300	400		
Cover strip deflection A [mm]	_	_	40	40		
Switch distance B ₁ [mm]	35	35	86	86		
Switch distance B ₂ [mm]	98	198	149	249		
Terminal box D [mm]	_	_	11	11		
End position at mechanical zero E [mm]	50	50 61				
End position at mechanical zero F [mm]	25		36			
Max. stroke length L _{ST} [mm]	2,961	2,861	2,859	2,759		
Total length L _T [mm]	$L_T = L_{ST} + 325$	$L_T = L_{ST} + 425$	$L_T = L_{ST} + 427$	$L_T = L_{ST} + 527$		

Right

Table 6.8 Load data					
	Permissible lo	ad data	Theoretical load data		
Lifetime refer- ence value	7,500 km		100 km		
Sledge type	S	L	S	L	
F _{ydynmax} 1) [N]	2.896	2.896	19.890	19.890	
F _{zdynmax} 1) [N]	3.628	3.628	19.890	19.890	
M _{xdynmax} [Nm]	28	28	156	156	
M _{ydynmax} [Nm]	239	421	1313	2307	
M _{zdynmax} [Nm]	191	336	1313	2307	
Load distance z [mm]	57,3	57,3	57,3	57,3	

¹⁾ Force must only act free of torque

Table 6.9 Guide	
Type of carriage	QEH15CA
Static load rating C ₀ [N]	15,280
Dynamic load rating C _{dyn 50 km} [N]	12,530

Table 6.10 General technical data	
Repeatability [mm]	± 0.02
Max. acceleration [m/s²]	15
Typical load capacity [kg]	25
Maximum total length [mm]	3,286
Area moment of inertia of profile cross section I_x [mm ⁴]	431,907
Area moment of inertia of profile cross section I_y [mm 4]	539,706

Table 6.11 Drive					
	Spindle	Spindle lead			
	5 mm	10 mm	16 mm		
Spindle diameter [mm]	15				
Axial play [mm]	0.02				
Max. feed force $F_{x_{max}}[N]$	2,541	1,989	1,915		
Max. speed [m/s]	0.25	0.50	0.80		
Max. drive torque M _{A_max} [Nm]	2.29	3.44	5.15		
Static load rating ballscrew C_0 [N]	23,800	18,300	17,900		
Dynamic load rating ballscrew C_{dyn} [N]	13,800	10,800	10,400		

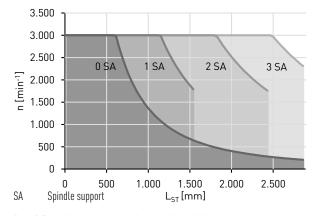


Fig. 6.3 Critical speed n over axis stroke length $\ensuremath{\text{L}_{\text{ST}}}$

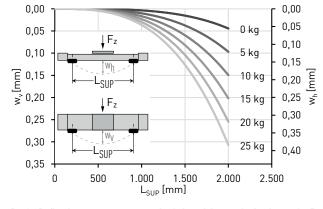
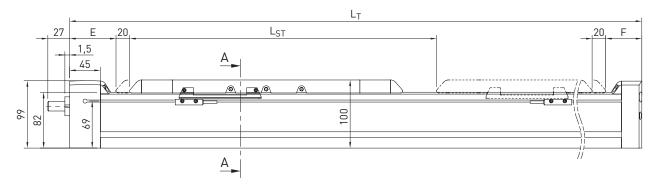
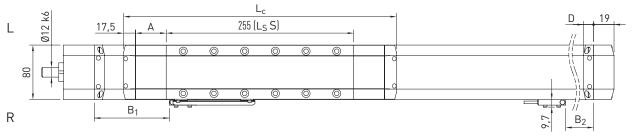
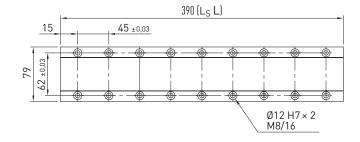


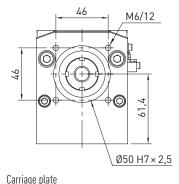
Fig. 6.4 Deflection w over unsupported axis length L_{SUP} under load capacity $\textbf{F}_{\textbf{z}}$

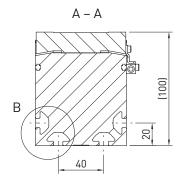
39

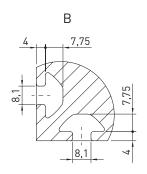

Table 6.12 Mechanical properties												
	Variant	Variant without cover			Variant	Variant with cover						
Sledge type	S	S		L			S	S		L		
Spindle pitch [mm]	5	10	16	5	10	16	5	10	16	5	10	16
Mass of the carriage [kg]	1.05	1.05	1.14	1.37	1.37	1.46	1.15	1.15	1.24	1.47	1.47	1.56
Mass at 0-stroke ²⁾ [kg]	3.51	3.51	3.60	4.43	4.42	4.51	4.29	4.29	4.38	5.22	5.21	5.30
Mass per 1 m stroke [kg/m]	5.92	5.92			6.02							
J _{rot.} ¹⁾ at 0-stroke [kgcm ²]	0.19	0.19 0.23			0.23			0.27				
J _{rot.} ¹⁾ Per 1 m stroke [kgcm ² /m]	0.39	0.39			0.39							
Idle torque at 0-stroke [Nm]	0.27	0.27			0.28							


¹⁾ Rotational moment of inertia


²⁾ The values apply to axes with one carriage. For axes with 2 carriages. add the following: Mass of carriage + mass per 1 m stroke x (Clearance between the carriages (in m) + carriage length $L_{\mathbb{C}}$ (in m))


Linear modules HM-S


6.5 Dimensions and specifications of HM080S



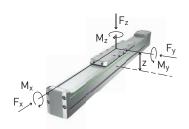

LS	carriage plat
L	Left
R	Right

Table 6.13 HM080S dimensions						
	Variant without cover Va		Variant with cover			
Sledge type	S	L	S	L		
Total carriage length L _c [mm]	290	425	380	515		
Cover strip deflection A [mm]	_	_	45	45		
Switch distance B ₁ [mm]	40	40	100	100		
Switch distance B ₂ [mm]	175	310	235	370		
Terminal box D [mm]	_	_	15	15		
End position at mechanical zero E [mm]	53	53 68				
End position at mechanical zero F [mm]	27		42			
Max. stroke length L _{ST} [mm]	4,090	3,955	3,970	3,835		
Total length L_{T} [mm]	$L_{T} = L_{ST} + 410$	$L_T = L_{ST} + 545$	$L_T = L_{ST} + 530$	$L_T = L_{ST} + 665$		

Table 6.14 Load data						
	Permissible lo	ad data	Theoretical load data			
Lifetime refer- ence value	7,500 km		100 km			
Sledge type	S L		S	L		
F _{ydynmax} 1) [N]	4,000	4,000	47,622	47,622		
F _{zdynmax} 1) [N]	8,686	8,686	47,622	47,622		
M _{xdynmax} [Nm]	67	67	366	366		
M _{ydynmax} [Nm]	766	1,352	4,198	7,412		
M _{zdynmax} [Nm]	353	623	4,198	7,412		
Load distance z [mm]	68.5	68.5	68.5	68.5		

¹⁾ Force must only act free of torque

Table 6.15 Guide	
Type of carriage	QHH20CA×2
Static load rating C ₀ [N]	33,860 × 2
Dynamic load rating C _{dyn 50 km} [N]	30,000 × 2

Table 6.16 General technical data					
Repeatability [mm]	± 0.02				
Max. acceleration [m/s²]	15				
Typical load capacity [kg]	60				
Maximum total length [mm]	4,500				
Area moment of inertia of profile cross section I_x [mm ⁴]	1,293,796				
Area moment of inertia of profile cross section I_y [mm 4]	1,759,898				

Table 6.17 Drive						
	Spindle lead					
	5 mm	10 mm	20 mm			
Spindle diameter [mm]	20					
Axial play [mm]	0.02					
Max. feed force $F_{x_{max}}[N]$	3,186	3,149	1,620			
Max. speed [m/s]	0.25	0.50	1.00			
Max. drive torque M _{A_max} [Nm]	2.89	5.36	5.51			
Static load rating ballscrew C ₀ [N]	33,800	33,600	16,000			
Dynamic load rating ballscrew C_{dyn} [N]	17,300	17,100	8,800			

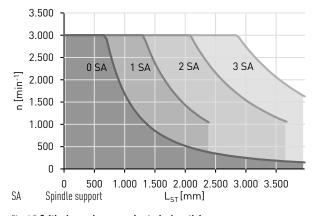


Fig. 6.5 Critical speed n over axis stroke length \textbf{L}_{ST}

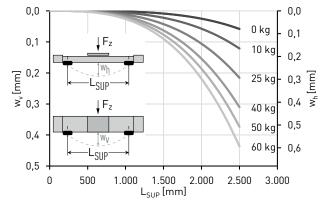
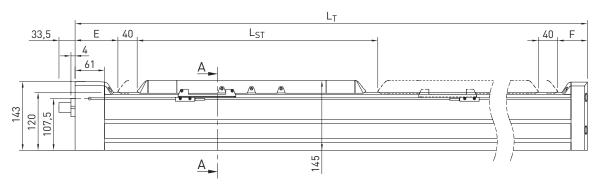
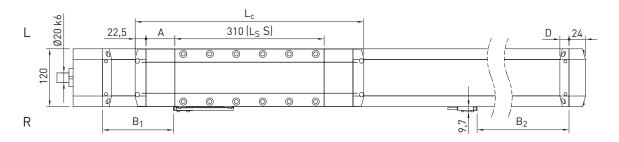
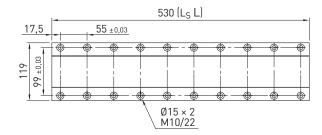
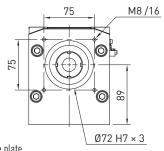


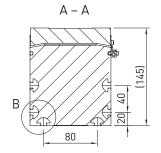
Fig. 6.6 Deflection w over unsupported axis length L_{SUP} under load capacity F_z

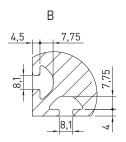

Table 6.18 Mechanical properties												
	Variant	Variant without cover				Variant with cover						
Sledge type	S	S L			S	S		L	L			
Spindle pitch [mm]	5	10	20	5	10	20	5	10	20	5	10	20
Mass of the carriage [kg]	1.97	2.11	2.20	2.65	2.79	2.87	2.17	2.31	2.39	2.85	2.99	3.07
Mass at 0-stroke ²⁾ [kg]	7.36	7.50	7.58	9.48	9.63	9.71	8.99	9.14	9.22	11.14	11.28	11.37
Mass per 1 m stroke [kg/m]	10.67	10.67					10.72					
J _{rot.} 1) at 0-stroke [kgcm ²]	0.82	0.82 0.99			0.97			1.14				
J _{rot.} ¹⁾ Per 1 m stroke [kgcm ² /m]	1.23	1.23					1.23					
Idle torque at 0-stroke [Nm]	0.35	D.35				0.52						


¹⁾ Rotational moment of inertia


^{2]} The values apply to axes with one carriage. For axes with 2 carriages. add the following: Mass of carriage + mass per 1 m stroke x (clearance between the carriages (in m) + carriage length L_C (in m))


Linear modules HM-S


6.6 Dimensions and specifications of HM120S



L _S	Carriage plate
L	Left

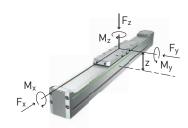

n	D:L.i
ĸ	Riaht

Table 6.19 HM120S dimensions							
	Variant without cover	Variant without cover					
Sledge type	S	L	S	L			
Total carriage length L _c [mm]	355	575	475	695			
Cover strip deflection A [mm]	_	-	60	60			
Switch distance B ₁ [mm]	68.5	68.5	147.5	147.5			
Switch distance B ₂ [mm]	253.5	473.5	332.5	552.5			
Terminal box D [mm]	_	-	19	19			
End position at mechanical zero E [mm]	70	89					
End position at mechanical zero F [mm]	33		52				
Max. stroke length L _{ST} [mm]	4,936	4,716	4,778	4,558			
Total length L _T [mm]	$L_{T} = L_{ST} + 538$	$L_T = L_{ST} + 758$	$L_{T} = L_{ST} + 696$	L _T = L _{ST} + 916			

Table 6.20 Load data						
	Permissible lo	ad data	Theoretical load data			
Lifetime refer- ence value	10,000 km		100 km			
Sledge type	S L		S	L		
F _{ydynmax} 1) [N]	15,327	15,327	92,482	92,482		
F _{zdynmax} 1) [N]	15,327 15,327		92,482	92,482		
M _{xdynmax} [Nm]	139	139	836	836		
M _{ydynmax} [Nm]	1,625	3,311	9,803	19,976		
M _{zdynmax} [Nm]	1,625 3,311		9,803	19,976		
Load distance z [mm]	99	99	99	99		

¹⁾ Force must only act free of torque

Table 6.21 Guide	
Type of carriage	QHW30CC × 2
Static load rating C_0 [N]	66,340 × 2
Dynamic load rating C _{dyn 50 km} [N]	58,260 × 2

Table 6.22 General technical data					
Repeatability [mm]	± 0.02				
Max. acceleration [m/s ²]	15				
Typical load capacity [kg]	120				
Maximum total length [mm]	5,473				
Area moment of inertia of profile cross section I_x [mm ⁴]	6,235,456				
Area moment of inertia of profile cross section I_y [mm 4]	8,646,933				

Table 6.23 Drive					
	Spindle lead				
	10 mm	20 mm	32 mm		
Spindle diameter [mm]	32				
Axial play [mm]	0.02				
Max. feed force $F_{x_{max}}[N]$	6,592	4,069	2,744		
Max. speed [m/s]	0.5	1.0	1.6		
Max. drive torque M _{A_max} [Nm]	11.34	13.80	14.82		
Static load rating ballscrew C_0 [N]	atic load rating ballscrew C ₀ [N] 88,000 50,600 32,80				
Dynamic load rating ballscrew C_{dyn} [N]	35,800	22,100	14,900		

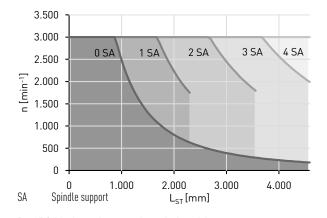


Fig. 6.7 Critical speed n over axis stroke length $\ensuremath{\text{L}_{\text{ST}}}$

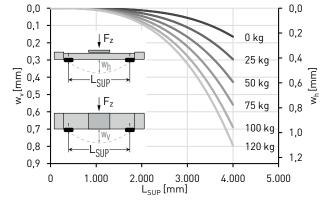


Fig. 6.8 Deflection w over unsupported axis length L_{SUP} under load capacity $\textbf{F}_{\textbf{z}}$

Table 6.24 Mechanical properties												
	Variant without cover			Variant	Variant with cover							
Sledge type	S	S L		S		L						
Spindle pitch [mm]	10	20	32	10	20	32	10	20	32	10	20	32
Mass of the carriage [kg]	6.04	6.18	6.19	8.41	8.56	8.57	6.52	6.67	6.68	8.91	9.05	9.07
Mass at 0-stroke ²⁾ [kg]	21.90	22.04	22.06	29.61	29.76	29.77	26.46	26.60	26.62	34.22	34.36	34.38
Mass per 1 m stroke [kg/m]	24.01						24.10					
J _{rot.} ¹⁾ at 0-stroke [kgcm ²]	5.77	5.77 7.55			7.05			8.83				
J _{rot.} ¹⁾ Per 1 m stroke [kgcm ² /m]	8.08											
Idle torque at 0-stroke [Nm]	0.85	0.90										

¹⁾ Rotational moment of inertia

²⁾ The values apply to axes with one carriage. For axes with 2 carriages. add the following: Mass of carriage + mass per 1 m stroke x (Clearance between the carriages (in m) + carriage length L_c (in m))

Linear tables HT-B

7. Linear tables HT-B

7.1 Properties of linear tables HT-B with toothed belt drive

The HIWIN linear tables with toothed belt drive are flexible positioning modules with integrated HIWIN double guide. They are ideal in particular for applications requiring high dynamic responses and high speeds.

Cleanroom-compatible linear motor axes HT-L up to ISO class 5 are available on request.

Linear guideway

A high-quality HIWIN double guide safely transfers forces and torques from the carriage to the axis profile. Four blocks are used per carriage, which are guided on a two parallel, high-precision profile rails. The SynchMotionTM technology with ball chain also ensures good synchronisation and smooth running in all sizes.

Drive adaptation

Thanks to its symmetrical design, the HIWIN linear table with toothed belt drive allows motors and gears to be mounted on all four sides of the drive blocks. You can find suitable adapters for all common motors in section 22.1.2 from page 160.

Toothed belt

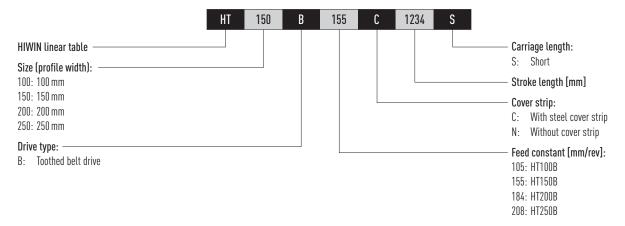
The toothed belt with modern high performance profiles (HTD shape) and reinforced steel tension members enables high power transmission while offering high skip resistance.

Cover strip

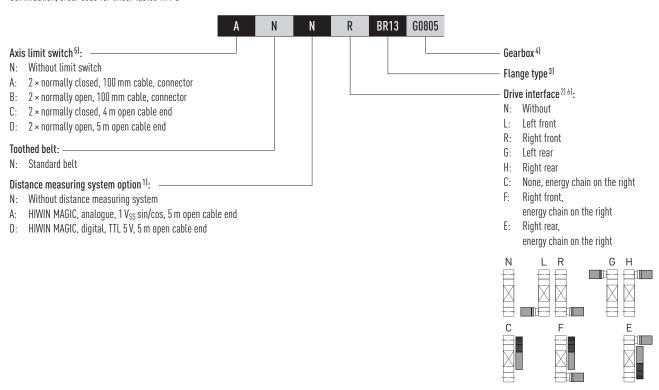
The steel cover strip prevents dirt and dust from entering the axis interior. In addition, the cover strip allows the axes to be used in areas with coarse, sharp-edged or hot foreign bodies. The magnetic strips integrated in the axis profile hold the belt securely in position and increase the sealing effect.

Carriage

The carriages have additional bore holes on each mounting hole to ensure ideal, reproducible alignment of the adjacent construction. You will find the matching centring sleeves in the accessories on Page 192. A grease nipple is provided on the carriage for each lubrication point for convenient maintenance of the linear axis.


Energy chain

Generously dimensioned energy chains provide space for safely carrying the supply lines. They are extremely compact and save space when attached to the axis. For details on the orientation of the energy chain, see section <u>22.3 from page 186</u>.

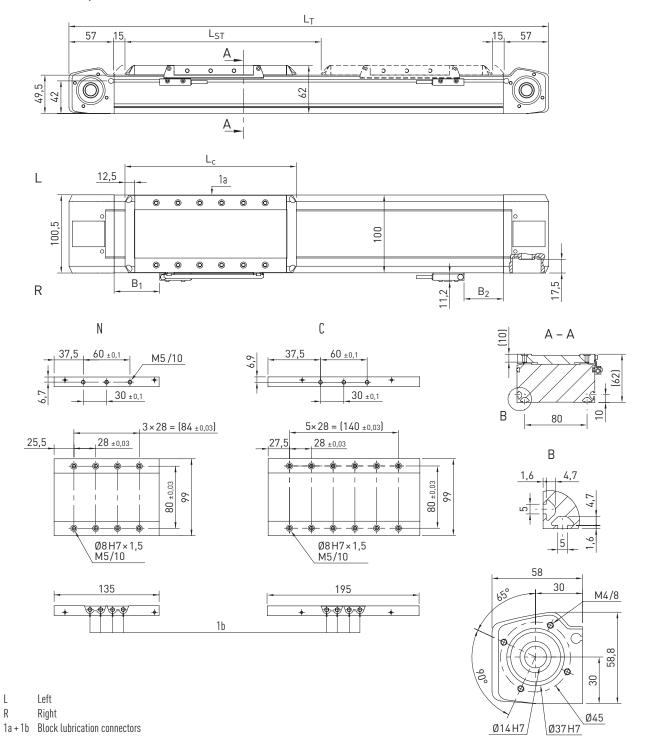


7.2 Order code for linear tables HT-B

Continuation, order code for linear tables HM-B

¹⁾ More detailed information in chapter 21 from page 156 or in the "HIWIN MAGIC Distance Measuring Systems" assembly instructions".

²⁾ If no drive interface is selected, the order code ends after this digit.


³⁾ You can find all flange types in <u>Table 22.2 from page 161</u>. If no gearbox is selected, the order code ends after this digit.

⁴⁾ You can find the right gearbox for the HIWIN axes in section <u>22.1.5.5 from page 170</u>.

⁵⁾ Additional reference switches on request.

^{6]} Dimensions of the drive interface and the energy chain can be found on <u>Page 186</u>.

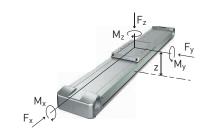
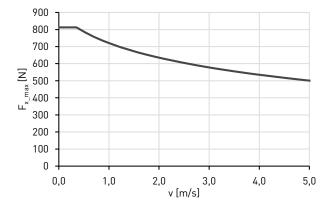

7.3 Dimensions and specifications of HT100B

Table 7.1 HT100B dimensions					
	Variant without cover N	Variant with cover C			
Total carriage length L _c [mm]	160	220			
Switch distance B ₁ [mm]	28.5	58.5			
Switch distance B ₂ [mm]	20.5	50.5			
Max. stroke length L _{ST} [mm]	5,612	5,552			
Total length L _T [mm]	$L_{T} = L_{ST} + 304$	L _T = L _{ST} + 364			

Table 7.2 Load data					
	Permissible lo	ad data	Theoretical load data		
Lifetime refer- ence value	20,000 km		100 km		
	Version with- out cover	Version with cover	Version with- out cover	Version with cover	
F _{ydynmax} 1) [N]	3,350	3,350	27,176	27,176	
F _{zdynmax} 1) [N]	3,575	3,575	27,176	27,176	
M _{xdynmax} [Nm]	93	93	707	707	
M _{ydynmax} [Nm]	159	206	1,209	1,563	
M _{zdynmax} [Nm]	149	193	1,209	1,563	
Load distance z [mm]	38.6	38.6	38.6	38.6	

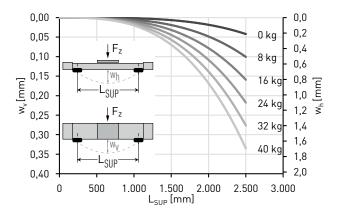


¹⁾ Force must only act free of torque

Table 7.3 General technical data			
Repeatability [mm]	± 0.05		
Max. feed force $F_{x_{max}}[N]$	813		
Max. speed [m/s]	5		
Max. acceleration [m/s ²]	30		
Max. drive torque M _{A_max} [Nm]	14		
Typical load capacity [kg]	40		
Maximum total length [mm]	5,916		
Area moment of inertia of profile cross section I_x [mm ⁴]	299,377		
Area moment of inertia of profile cross section I_y [mm 4]	1,516,426		

Table 7.4 Guide	
Type of carriage	QEH15CA × 4
Static load rating C ₀ [N]	15,280 × 4
Dynamic load rating C _{dyn 50 km} [N]	12,530 × 4

Table 7.5 Drive	
Drive element	B25HTD5
Feed constant [mm/U]	105
Toothed belt effective diameter [mm]	33.42



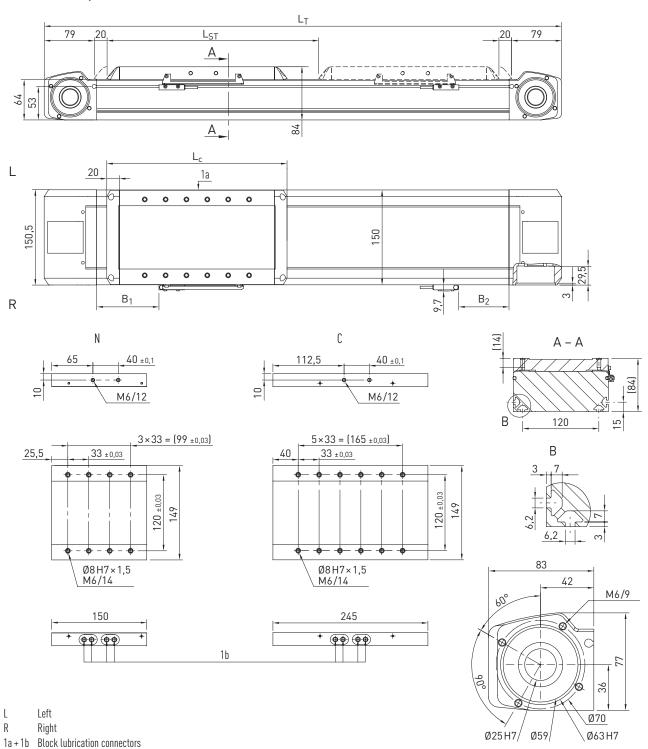

Fig. 7.1 Max. feed force $\textbf{F}_{\textbf{x}_\text{max}}$ as a function of axis speed v

Fig. 7.2 Deflection w over unsupported axis length L_{SUP} under load capacity $\textbf{F}_{\textbf{z}}$

Table 7.6 Mechanical properties			
	Variant without cover N	Variant with cover C	
Mass of the carriage [kg]	1.34	1.53	
Mass at 0-stroke [kg]	4.13	4.73	
Mass per 1 m stroke [kg/m]	6.54	6.71	
J _{rot.} ¹⁾ [kgcm ²]	0.63	0.63	
Idle torque at O-stroke [Nm]	1.00	1.50	
1) Rotational moment of inertia			

Linear tables HT-B

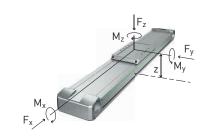

7.4 Dimensions and specifications of HT150B

Table 7.7 HT150B dimensions					
	Variant without cover N	Variant with cover C			
Total carriage length L _c [mm]	190	285			
Switch distance B ₁ [mm]	51	98.5			
Switch distance B ₂ [mm]	32	79.5			
Max. stroke length L _{ST} [mm]	5,578	5,483			
Total length L _T [mm]	$L_{T} = L_{ST} + 388$	$L_{T} = L_{ST} + 483$			

Table 7.8 Load data					
	Permissible lo	ad data	Theoretical load data		
Lifetime refer- ence value	20,000 km		100 km		
	Version with- out cover	Version with cover	Version with- out cover	Version with cover	
F _{ydynmax} 1) [N]	3,350	3,350	39,780	39,780	
F _{zdynmax} 1) [N]	5,233	5,233	39,780	39,780	
M _{xdynmax} [Nm]	246	246	1,870	1,870	
M _{ydynmax} [Nm]	246	345	1,870	2,625	
M _{zdynmax} [Nm]	157	221	1,870	2,625	
Load distance z [mm]	51.4	51.4	51.4	51.4	

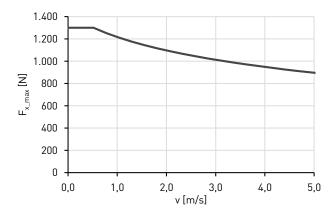

¹⁾ Force must only act free of torque

Table 7.9 General technical data			
Repeatability [mm]	± 0.05		
Max. feed force $F_{x_{max}}[N]$	1,300		
Max. speed [m/s]	5		
Max. acceleration [m/s ²]	30		
Max. drive torque M _{A_max} [Nm]	32.1		
Typical load capacity [kg]	80		
Maximum total length 1] [mm]	5,966		
Area moment of inertia of profile cross section I_x [mm ⁴]	907,754		
Area moment of inertia of profile cross section I_y [mm 4]	7,417,610		

Table 7.10 Guide	
Type of carriage	QEH15CA × 4
Static load rating C_0 [N]	15,280 × 4
Dynamic load rating C _{dyn 50 km} [N]	12,530 × 4

Table 7.11 Drive		
Drive element B40HTD5		
Feed constant [mm/U] 155		
Toothed belt effective diameter [mm] 49.34		

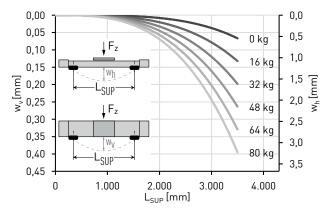
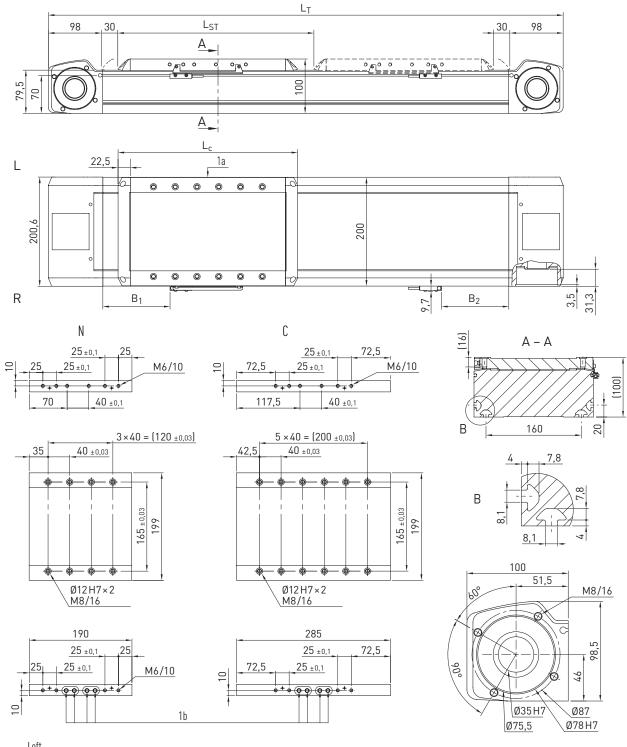
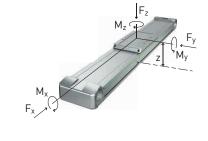



Fig. 7.3 Max. feed force $\textbf{F}_{\textbf{x}_\text{max}}$ as a function of axis speed v

Fig. 7.4 Deflection w over unsupported axis length L_{SUP} under load capacity $\textbf{F}_{\textbf{z}}$

Table 7.12 Mechanical properties				
Variant without cover N Variant with cover C				
Mass of the carriage [kg]	2.33	2.94		
Mass at 0-stroke [kg]	8.60	10.29		
Mass per 1 m stroke [kg/m]	10.84	11.13		
J _{rot.} ¹⁾ [kgcm ²]	5.09	5.09		
Idle torque at O-stroke [Nm]	1.00	1.50		
1) Rotational moment of inertia				

7.5 Dimensions and specifications of HT200B


L Left R Right

1a + 1b Block lubrication connectors

Table 7.13 HT200B dimensions			
	Variant without cover N	Variant with cover C	
Total carriage length L _c [mm]	235	330	
Switch distance B ₁ [mm]	76	123.5	
Switch distance B ₂ [mm]	76	123.5	
Max. stroke length L _{ST} [mm]	5,509	5,414	
Total length L _T [mm]	$L_{T} = L_{ST} + 491$	$L_{T} = L_{ST} + 586$	

Table 7.14 Load data				
	Permissible load data		Theoretical load data	
Lifetime reference value	20,000 km		100 km	
	Version with- out cover	Version with cover	Version with- out cover	Version with cover
F _{ydynmax} 1) [N]	7,800	7,800	95,244	95,244
F _{zdynmax} 1) [N]	12,528	12,528	95,244	95,244
M _{xdynmax} [Nm]	852	852	6,477	6,477
M _{ydynmax} [Nm]	708	1,002	5,381	7,620
M _{zdynmax} [Nm]	441	624	5,381	7,620
Load distance z [mm]	58.5	58.5	58.5	58.5

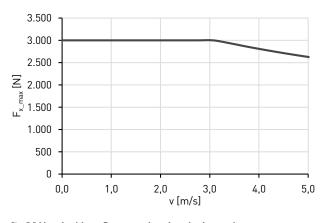

¹⁾ Force must only act free of torque

Table 7.15 General technical data	
Repeatability [mm]	± 0.05
Max. feed force $F_{x_{max}}[N]$	3,000
Max. speed [m/s]	5
Max. acceleration [m/s ²]	30
Max. drive torque M _{A_max} [Nm]	87.9
Typical load capacity [kg]	150
Maximum total length 1] [mm]	6,000
Area moment of inertia of profile cross section I_x [mm ⁴]	2,071,928
Area moment of inertia of profile cross section I_y [mm 4]	19,658,810

Table 7.16 Guide		
QHH20CA×4		
33,860 × 4		
30,000 × 4		

Table 7.17 Drive		
Drive element	B50HTD8	
Feed constant [mm/U] 184		
Toothed belt effective diameter [mm]	58,57	

^{1]} Long axes on request

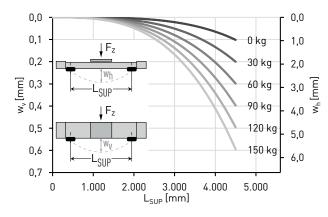
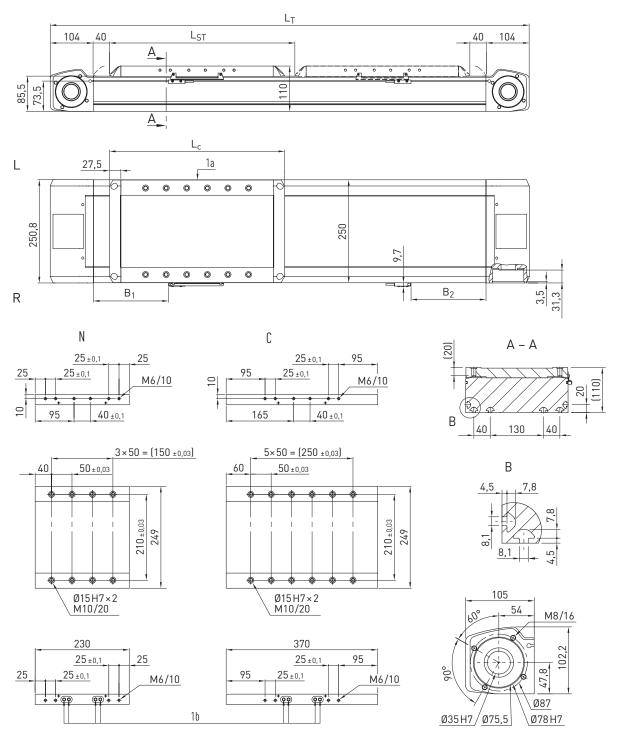
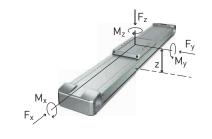



Fig. 7.5 Max. feed force $\textbf{F}_{\textbf{x}_\text{max}}$ as a function of axis speed v

Fig. 7.6 Deflection w over unsupported axis length L_{SUP} under load capacity $\textbf{F}_{\textbf{z}}$

Table 7.18 Mechanical properties			
	Variant without cover N	Variant with cover C	
Mass of the carriage [kg]	4.40	5.19	
Mass at 0-stroke [kg]	16.97	19.54	
Mass per 1 m stroke [kg/m]	17.27	17.75	
J _{rot.} ¹⁾ [kgcm ²]	18.37	18.37	
Idle torque at O-stroke [Nm]	2.00	2.50	
1) Rotational moment of inertia			

7.6 Dimensions and specifications of HT250B


L Left R Right

1a + 1b Block lubrication connectors

Table 7.19 HT250B dimensions			
	Variant without cover N	Variant with cover C	
Total carriage length L _c [mm]	285	425	
Switch distance B ₁ [mm]	112	182	
Switch distance B ₂ [mm]	112	182	
Max. stroke length L _{ST} [mm]	5,537	5,397	
Total length $L_{\bar{1}}$ [mm]	$L_{T} = L_{ST} + 573$	$L_{T} = L_{ST} + 713$	

Table 7.20 Load data				
	Permissible load data		Theoretical load data	
Lifetime refer- ence value	20,000 km		100 km	
	Version with- out cover	Version with cover	Version with- out cover	Version with cover
F _{ydynmax} 1) [N]	11,600	11,600	133,024	133,024
F _{zdynmax} 1) [N]	17,498	17,498	133,024	133,024
M _{xdynmax} [Nm]	1,496	1,496	11,374	11,374
M _{ydynmax} [Nm]	1,356	1,706	10,309	12,970
M _{zdynmax} [Nm]	899	1,131	10,309	12,970
Load distance z [mm]	68.01	68.01	68.01	68.01

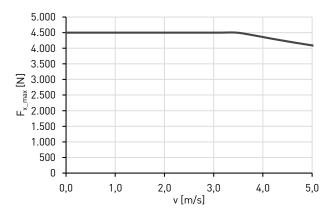

¹⁾ Force must only act free of torque

Table 7.21 General technical data	
Repeatability [mm]	± 0.05
Max. feed force $F_{x_{max}}[N]$	4,500
Max. speed [m/s]	5
Max. acceleration [m/s ²]	30
Max. drive torque M _{A_max} [Nm]	149
Typical load capacity [kg]	250
Maximum total length 1] [mm]	6,110
Area moment of inertia of profile cross section I_x [mm ⁴]	3,265,771
Area moment of inertia of profile cross section I_y [mm 4]	39,262,043

Table 7.22 Guide		
Type of carriage	QHH25CA×4	
Static load rating C ₀ [N]	48,750 × 4	
Dynamic load rating $C_{dyn 50 \text{ km}}$ [N] 41,900 × 4		

Table 7.23 Drive	
Drive element	B75HTD8
Feed constant [mm/U]	208
Toothed belt effective diameter [mm]	66.21

¹⁾ Long axes on request

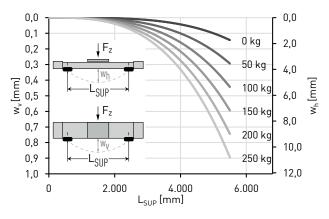


Fig. 7.7 Max. feed force $\textbf{F}_{\textbf{x}_\text{max}}$ as a function of axis speed v

Fig. 7.8 Deflection w over unsupported axis length L_{SUP} under load capacity $\textbf{F}_{\textbf{z}}$

Table 7.24 Mechanical properties			
	Variant without cover N	Variant with cover C	
Mass of the carriage [kg]	7.93	9.67	
Mass at 0-stroke [kg]	28.42	33.47	
Mass per 1 m stroke [kg/m]	22.50	23.09	
J _{rot.} ¹⁾ [kgcm ²]	36.38	36.38	
Idle torque at O-stroke [Nm]	4.00	4.50	
1) Rotational moment of inertia			

Linear tables HT-S

8. Linear tables HT-S

8.1 Properties of linear tables HT-S with ballscrew

The HIWIN linear tables with ballscrew are flexible positioning modules with integrated HIWIN double guide. They are especially suitable for applications where high loads are moved with high precision.

Linear guideway

A high-quality HIWIN double guide safely transfers forces and torques from the carriage to the axis profile. Four blocks are used per carriage, which are guided on a two parallel, high-precision profile rails. The SynchMotionTM technology with ball chain also ensures good synchronisation and smooth running in all sizes.

Motor connection and belt drive

The multi-part design of the motor/gearbox adaptation creates an extremely flexible drive interface for attachment and conversion of the drive technology.

Ballscrew

The integrated HIWIN ballscrews ensure precise positioning thanks to their high pitch accuracy and rigidity. Different shaft pitches are available for each size in order to optimally meet the requirements for feed force and dynamics.

Cover strip

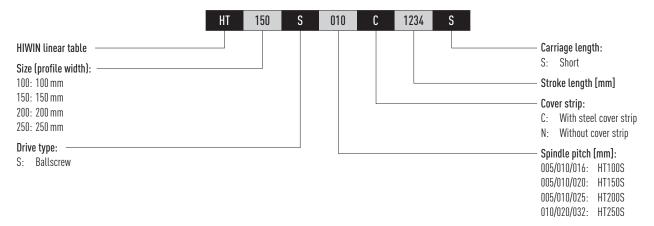
The steel cover strip prevents dirt and dust from entering the axis interior. In addition, the cover strip allows the axes to be used in areas with coarse, sharp-edged or hot foreign bodies. The magnetic strips integrated in the axis profile hold the belt securely in position and increase the sealing effect.

Carriage

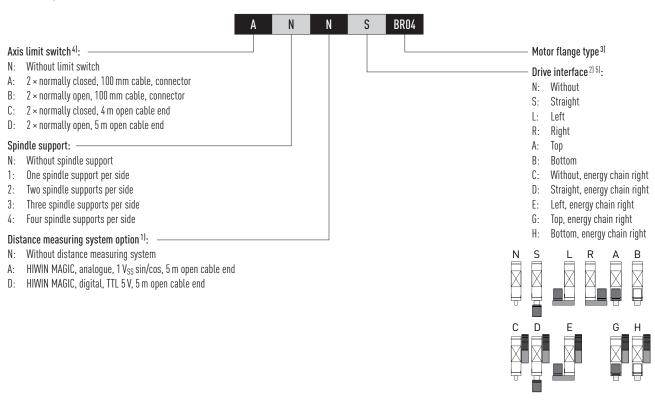
The carriages have additional bore holes on each mounting hole to ensure ideal, reproducible alignment of the adjacent construction. You will find the matching centring sleeves in the accessories on Page 192. A grease nipple is provided on the carriage for each lubrication point for convenient maintenance of the linear axis.

Energy chain

Generously dimensioned energy chains provide space for safely carrying the supply lines. They are extremely compact and save space when attached to the axis. For details on the orientation of the energy chain, see section 22.3 from page 186.



Spindle support

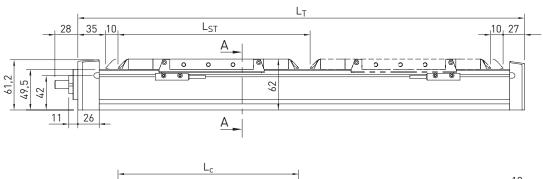

In applications with long travel distances and high velocity, the critical speed of the shaft is quickly reached, meaning an appropriate support is required to prevent the shaft from swinging up. In HIWIN spindle axes, up to four travelling spindle supports can be installed on each side of the carriage. This allows driving at full speed, even with large strokes.

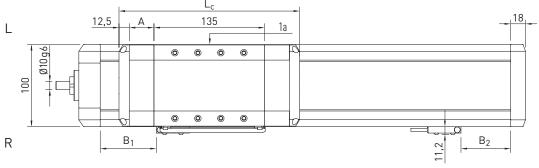
8.2 Order code for linear tables HT-S

Continuation, order code for linear tables HT-B

¹⁾ More detailed information in chapter 21 from page 156 or in the "HIWIN MAGIC Distance Measuring Systems" assembly instructions".

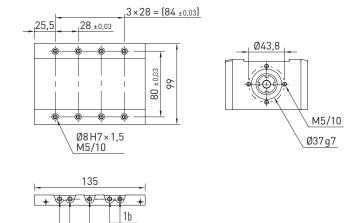
²⁾ If no drive interface is selected, the order code ends after this digit.

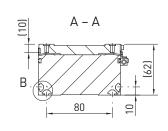

³⁾ You can find all flange types in Table 22.15 from page 175. If no motor is selected, the order code ends after this digit.

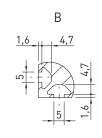

⁴⁾ Additional reference switches on request.

⁵⁾ Dimensions of the drive interface and the energy chain can be found on <u>Page 186</u>.

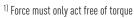
Linear tables HT-S


8.3 Dimensions and specifications of HT100S





1b



1a + 1b Block lubrication connectors1c Ballscrew lubrication connectors

Table 8.1 HT100S dimensions			
	Variant without cover	Variant with cover	
Total carriage length L _c [mm]	160	220	
Cover strip deflection A [mm]	_	30	
Switch distance B ₁ [mm]	33.5	63.5	
Switch distance B ₂ [mm]	25.5	55.5	
Max. stroke length L _{ST} [mm]	3,036	2,976	
Total length L _T [mm]	$L_{T} = L_{ST} + 242$	$L_T = L_{ST} + 302$	

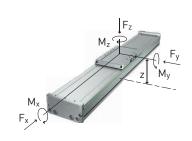


Table 8.2 Load data			
	Permissible load data	Theoretical load data	
Lifetime refer- ence value	6,000 km	100 km	
F _{ydynmax} 1) [N]	3,350	27,176	
F _{zdynmax} 1) [N]	5,340	27,176	
M _{xdynmax} [Nm]	139	707	
M _{ydynmax} [Nm]	280	1,427	
M _{zdynmax} [Nm]	176	1,427	
Load distance z [mm]	38.6	38.6	

Table 8.3 General technical data	
Repeatability [mm]	± 0.02
Max. acceleration [m/s ²]	15
Typical load capacity [kg]	40
Maximum total length [mm]	3,278
Area moment of inertia of profile cross section I_x [mm ⁴]	299,377
Area moment of inertia of profile cross section I _y [mm ⁴]	1,516,426
Area moment of inertia of profile cross section I _y [mm ⁴]	1,516,426

Table 8.4 Guide	
Type of carriage	QEH15SA×4
Static load rating C ₀ [N]	8,790 × 4
Dynamic load rating C _{dyn 50 km} [N]	8,560 × 4

Table 8.5 Drive			
	Spindle lead		
	5 mm	10 mm	16 mm
Spindle diameter [mm]	15		
Axial play [mm]	0.02		
Max. feed force F _{x_max} [N]	2,541 1,989 1,915		
Max. speed [m/s]	0.25 0.50 0.80		
Max. drive torque M _{A_max} [Nm]	2.42 3.57 5.28		
Static load rating ballscrew C_0 [N]	23,800 18,300 17,900		
Dynamic load rating ballscrew C _{dyn} [N]	13,800 10,800 10,400		

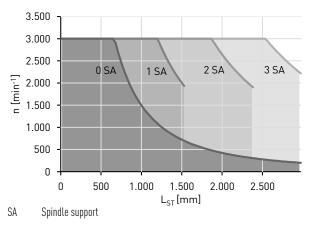
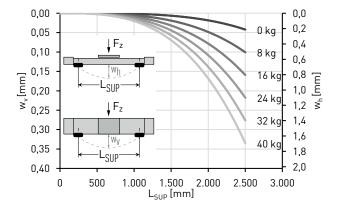
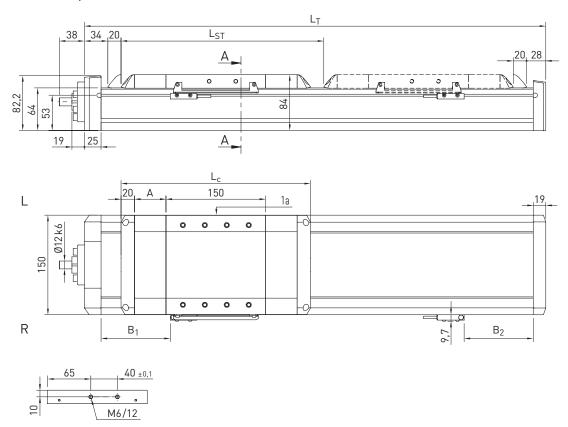


Fig. 8.1 Critical speed n over axis stroke length L_{ST}

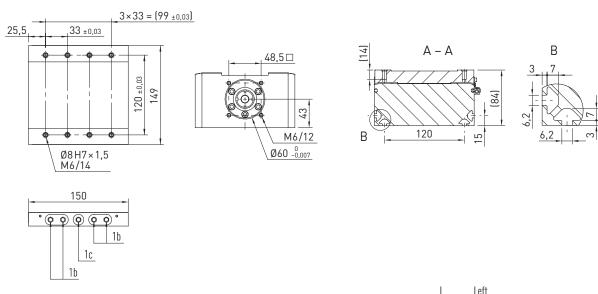
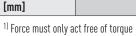

Fig. 8.2 Deflection w over unsupported axis length L_{SUP} under load capacity $\textbf{F}_{\textbf{z}}$

Table 8.6 Mechanical properties						
	Variant wit	Variant without cover		Variant wi	Variant with cover	
Spindle pitch [mm]	5	10	16	5	10	16
Mass of the carriage [kg]	1.15	1.15	1.24	1.28	1.28	1.35
Mass at 0-stroke [kg]	3.52	3.52	3.61	4.19	4.18	4.26
Mass per 1 m stroke [kg/m]	7.68			7.83		
J _{rot.} ¹⁾ at 0-stroke [kgcm ²]	0.16			0.19		
J _{rot.} ¹⁾ Per 1 m stroke [kgcm²/m]	0.39	0.39				
Idle torque at 0-stroke [Nm]	0.40			0.50		
1) Rotational moment of inertia						

Linear tables HT-S

8.4 Dimensions and specifications of HT150S


L Left

1a + 1b Block lubrication connectors1c Ballscrew lubrication connectors

Table 8.7 HT150S dimensions			
Variant without cover Variant with cover			
Total carriage length L _c [mm]	190	285	
Cover strip deflection A [mm]	_	47.5	
Switch distance B ₁ [mm]	54.5	102	
Switch distance B ₂ [mm]	54.5	102	
Max. stroke length L _{ST} [mm]	5,176	5,081	
Total length L _T [mm]	$L_{T} = L_{ST} + 292$	$L_{T} = L_{ST} + 387$	

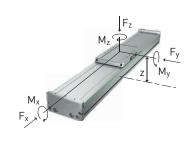


Table 8.8 Load data			
	Permissible load data	Theoretical load data	
Lifetime refer- ence value	7,500 km	100 km	
F _{ydynmax} 1) [N]	3,350	39,780	
F _{zdynmax} 1) [N]	7,256	39,780	
M _{xdynmax} [Nm]	341	1,870	
M _{ydynmax} [Nm]	337	1,850	
M _{zdynmax} [Nm]	156	1,850	
Load distance z [mm]	51.4	51.4	

Table 8.9 General technical data	
Repeatability [mm]	± 0.02
Max. acceleration [m/s ²]	15
Typical load capacity [kg]	80
Maximum total length [mm]	5,042
Area moment of inertia of profile cross section I_x [mm ⁴]	907,754
Area moment of inertia of profile cross section I _y [mm ⁴]	7,417,610

Table 8.10 Guide	
Type of carriage	QEH15CA × 4
Static load rating $C_0[N]$	15,280 × 4
Dynamic load rating C _{dyn 50 km} [N]	12,530 × 4

Table 8.11 Drive					
	Spindle lead				
	5 mm	10 mm	20 mm		
Spindle diameter [mm]	20				
Axial play [mm]	0.02				
Max. feed force F _{x_max} [N]	3,186	3,149	1,620		
Max. speed [m/s]	0.25	0.50	1.00		
Max. drive torque M _{A_max} [Nm]	3.14	5.61	5.76		
Static load rating ballscrew C_0 [N]	33,800	33,600	16,000		
Dynamic load rating ballscrew C _{dyn} [N]	17,300	17,100	8,800		

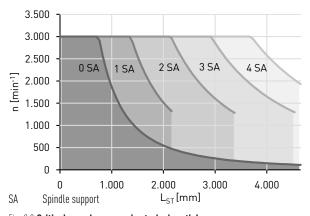


Fig. 8.3 Critical speed n over axis stroke length L_{ST}

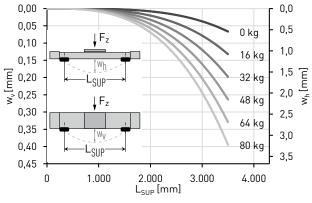
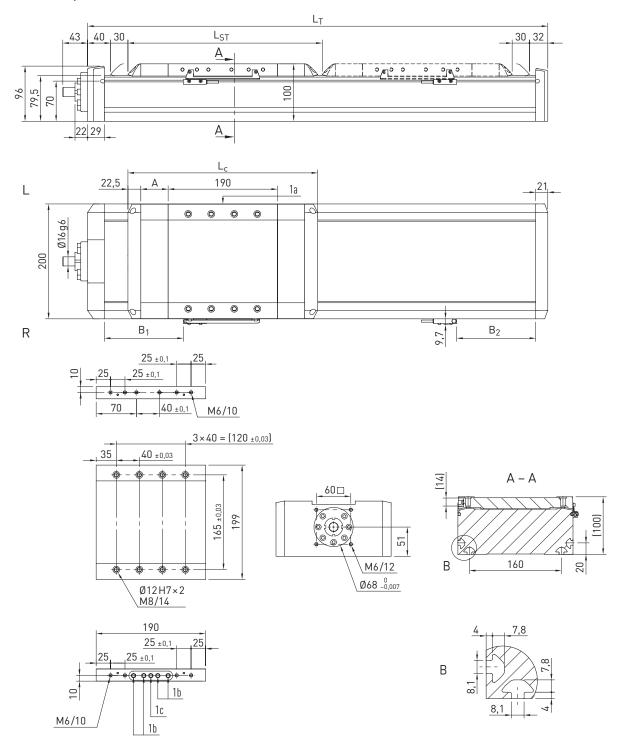
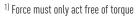



Fig. 8.4 Deflection w over unsupported axis length L_{SUP} under load capacity $\textbf{F}_{\textbf{z}}$

Table 8.12 Mechanical properties							
	Variant wit	Variant without cover			Variant with cover		
Spindle pitch [mm]	5	10	20	5	10	20	
Mass of the carriage [kg]	2.25	2.40	2.48	2.74	2.88	2.96	
Mass at 0-stroke [kg]	7.40	7.54	7.62	9.28	9.42	9.50	
Mass per 1 m stroke [kg/m]	12.99			13.28			
J _{rot.} ¹⁾ at 0-stroke [kgcm ²]	0.69			0.81			
J _{rot.} ¹⁾ Per 1 m stroke [kgcm²/m]	1.23			1.23			
Idle torque at O-stroke [Nm]	0.60			0.70			
1) Rotational moment of inertia							

8.5 Dimensions and specifications of HT200S


L	Left
R	Right

1a + 1b Block lubrication connectors1c Ballscrew lubrication connectors

Table 8.13 HT200S dimensions					
	Variant without cover	Variant with cover			
Total carriage length L _c [mm]	235	330			
Cover strip deflection A [mm]	_	47.5			
Switch distance B ₁ [mm]	89	136.5			
Switch distance B ₂ [mm]	89	136.5			
Max. stroke length L _{ST} [mm]	4,883	4,788			
Total length L _T [mm]	$L_{T} = L_{ST} + 367$	$L_{T} = L_{ST} + 462$			

Table 8.14 Load data					
	Permissible load data	Theoretical load data			
Lifetime refer- ence value	10,000 km	100 km			
F _{ydynmax} 1) [N]	7,800	95,244			
F _{zdynmax} 1) [N]	15,784	95,244			
M _{xdynmax} [Nm]	1,073	6,477			
M _{ydynmax} [Nm]	892	5,381			
M _{zdynmax} [Nm]	441	5,381			
Load distance z [mm]	58.5	58.5			

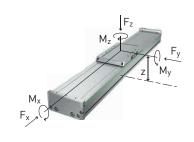


Table 8.15 General technical data	
Repeatability [mm]	± 0.02
Max. acceleration [m/s ²]	15
Typical load capacity [kg]	150
Maximum total length [mm]	5,250
Area moment of inertia of profile cross section I_x [mm ⁴]	2,071,928
Area moment of inertia of profile cross section I_y [mm 4]	19,658,810

Table 8.16 Guide	
Type of carriage	QHH20CA × 4
Static load rating C ₀ [N]	33,860 × 4
Dynamic load rating C _{dyn 50 km} [N]	30,000 × 4

	3.500 ٦	
	3.000	
	2.500	0 SA 1 SA 2 SA 3 SA 4 SA
n [min ⁻¹]	2.000	
n [m	1.500	
	1.000	
	500 -	
	0 -	
	C	1.000 2.000 3.000 4.000
SA	Spino	support L _{ST} [mm]

Fig. 8.5 Critical speed n over axis stroke length $\ensuremath{\text{L}_{\text{ST}}}$

Table 8.17 Drive			
	Spindle lead		
	5 mm	10 mm	25 mm
Spindle diameter [mm]	25		
Axial play [mm]	0.02		
Max. feed force $F_{x_{max}}[N]$	3,535	3,499	1,786
Max. speed [m/s]	0.25	0.50	1.25
Max. drive torque M _{A_max} [Nm]	3.61	6.37	7.91
Static load rating ballscrew C_0 [N]	42,900	42,600	20,200
Dynamic load rating ballscrew C_{dyn} [N]	19,200	19,000	9,700

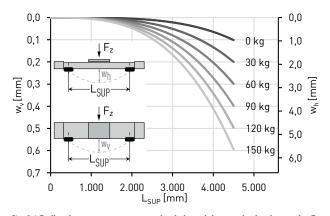
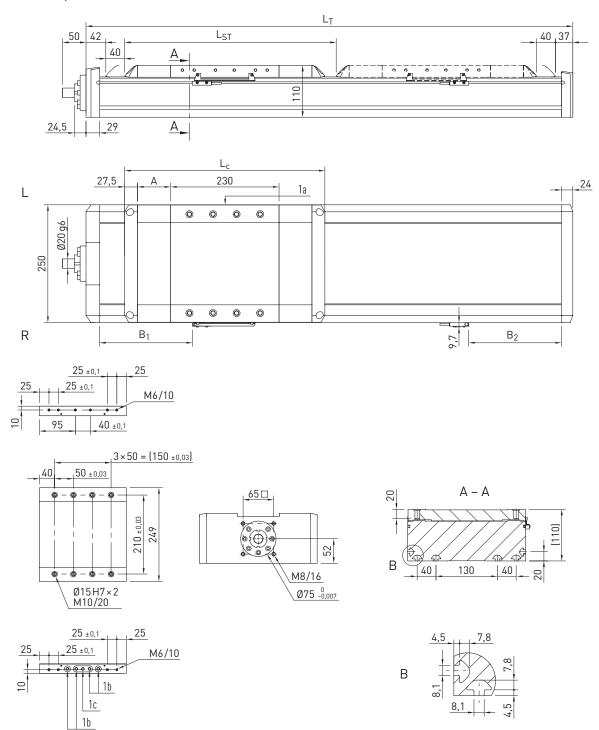
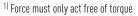



Fig. 8.6 Deflection w over unsupported axis length L_{SUP} under load capacity $\textbf{F}_{\textbf{z}}$

Table 8.18 Mechanical properties						
	Variant wit	hout cover		Variant wit	h cover	
Spindle pitch [mm]	5	10	25	5	10	25
Mass of the carriage [kg]	4.42	4.51	4.64	5.01	5.10	5.23
Mass at 0-stroke [kg]	14.24	14.33	14.46	17.11	17.21	17.34
Mass per 1 m stroke [kg/m]	20.49			20.97		
J _{rot.} ¹⁾ at 0-stroke [kgcm²]	2.01			2.30		
J _{rot.} ¹⁾ Per 1 m stroke [kgcm²/m]	3.01			3.01		
Idle torque at O-stroke [Nm]	0.80			1.00		
1) Rotational moment of inertia	·					

Linear tables HT-S

8.6 Dimensions and specifications of HT250S


L	Left
R	Rinht

1a + 1b Block lubrication connectors1c Ballscrew lubrication connectors

Table 8.19 HT250S dimensions					
	Variant without cover	Variant with cover			
Total carriage length L _c [mm]	285	425			
Cover strip deflection A [mm]	_	70			
Switch distance B ₁ [mm]	126	196			
Switch distance B ₂ [mm]	126	196			
Max. stroke length L _{ST} [mm]	4.790	4.650			
Total length L _T [mm]	$L_{T} = L_{ST} + 444$	$L_{T} = L_{ST} + 584$			

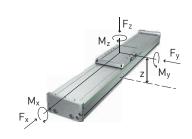


Table 8.20 Load data					
	Permissible load data	Theoretical load data			
Lifetime refer- ence value	12,500 km	100 km			
F _{ydynmax} 1) [N]	11,600	133,024			
F _{zdynmax} 1) [N]	20,465	133,024			
M _{xdynmax} [Nm]	1,750	11,374			
M _{ydynmax} [Nm]	1,514	9,844			
M _{zdynmax} [Nm]	858	9,844			
Load distance z [mm]	68	68			

Table 8.21 General technical data				
Repeatability [mm]	± 0.02			
Max. acceleration [m/s ²]	15			
Typical load capacity [kg]	250			
Maximum total length [mm]	5.234			
Area moment of inertia of profile cross section I_x [mm ⁴]	3,265,771			
Area moment of inertia of profile cross section I_y [mm 4]	39,262,043			

Table 8.22 Guide	
Type of carriage	QHH25CA×4
Static load rating C ₀ [N]	48,750 × 4
Dynamic load rating C _{dyn 50 km} [N]	41,900 × 4

Table 8.23 Drive				
	Spindle lead			
	10 mm	20 mm	32 mm	
Spindle diameter [mm]	32			
Axial play [mm]	0.02			
Max. feed force F _{x_max} [N]	5,300 4,069 2,744		2,744	
Max. speed [m/s]	0.50	1.00	1.60	
Max. drive torque M _{A_max} [Nm]	9.94	14.45	15.47	
Static load rating ballscrew C_0 [N]	88,000	50,600	32,800	
Dynamic load rating ballscrew $C_{\rm dyn}$ [N]	28,782	22,100	14,900	

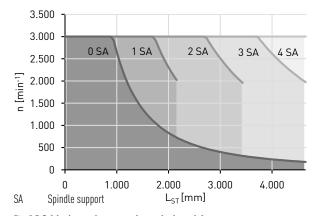


Fig. 8.7 Critical speed n over axis stroke length L_{ST}

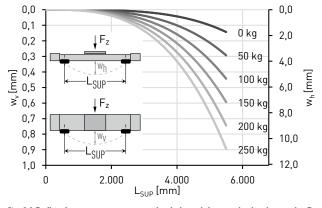


Fig. 8.8 Deflection w over unsupported axis length L_{SUP} under load capacity $\textbf{F}_{\textbf{z}}$

Table 8.24 Mechanical properties							
	Variant with	Variant without cover			Variant with cover		
Spindle pitch [mm]	10	20	32	10	20	32	
Mass of the carriage [kg]	8.17	8.39	8.41	9.57	9.71	9.72	
Mass at 0-stroke [kg]	23.83	24.05	24.06	29.75	29.89	29.90	
Mass per 1 m stroke [kg/m]	27.86	28.45					
J _{rot.} ¹⁾ At 0-stroke [kgcm ²]	5.15			6.28			
J _{rot.} ¹⁾ Per 1 m stroke [kgcm²/m]	8.08						
Idle torque at O-stroke [Nm]	1.50 1.80						

1) Rotational moment of inertia

Linear tables HT-L

9. Linear tables HT-L

9.1 Properties of linear tables HT-S with linear motor

The HIWIN linear axes with linear motor are flexible positioning modules with integrated HIWIN double guide. They are especially suitable for precise positioning at high speed and with great dynamics.

Cleanroom-compatible linear motor axes HT-L up to ISO class 4 are available on request.

Linear guideway

A high-quality HIWIN double guide safely transfers forces and torques from the carriage to the axis profile. Four blocks are used per carriage, which are guided on a two parallel, high-precision profile rails. The SynchMotion™ technology with ball chain also ensures good synchronisation and smooth running in the HT150L, HT200L and HT250L sizes.

Electric interface

The quick-release connectors allow motor and encoder cables to be connected quickly and easily to the side of the carriage without tools. Depending on the installation situation and the desired cable routing, two different orientations of the connector are available as options.

Linear motor

The integrated HIWIN linear motors ensure dynamic and precise positioning. Two motor sizes are available for each size in order to optimally meet the requirements for the required feed force.

Energy chain

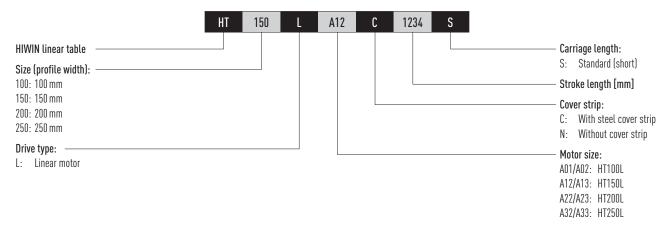
Generously dimensioned energy chains provide space for safely carrying the supply lines. They are extremely compact and save space when attached to the axis. For details on the orientation of the energy chain, see section <u>22.4 from page 188</u>.

Carriage

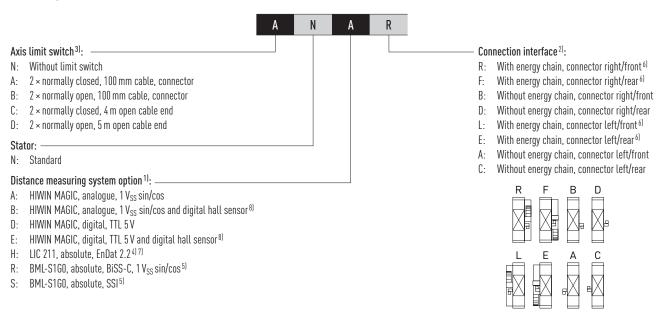
The carriages have additional bore holes on each mounting hole to ensure ideal, reproducible alignment of the adjacent construction. You will find the matching centring sleeves in the accessories on Page 192. A grease nipple is provided on the carriage for each lubrication point for convenient maintenance of the linear axis.

Cover strip

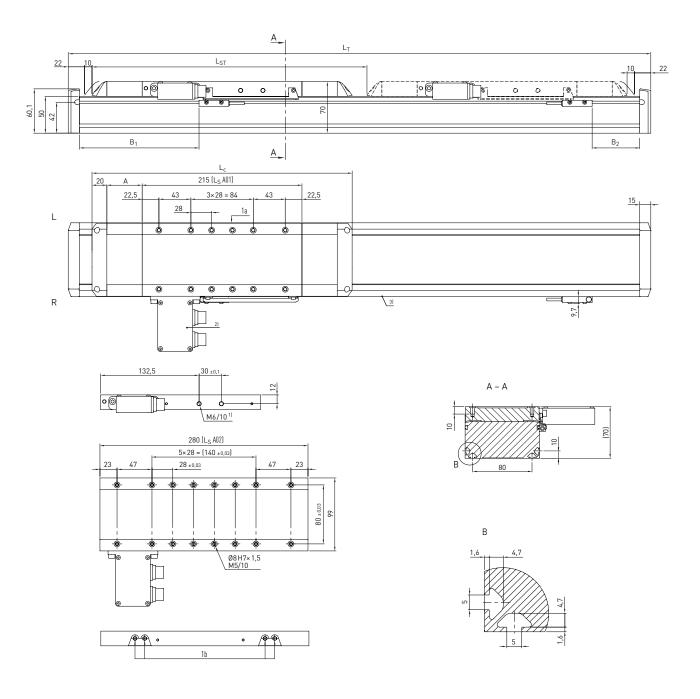
The steel cover strip prevents dirt and dust from entering the axis interior. In addition, the cover strip allows the axes to be used in areas with coarse, sharp-edged or hot foreign bodies. The magnetic strips integrated in the axis profile hold the belt securely in position and increase the sealing effect.


Positioning measuring systems

The distance measuring system is integrated into the inside of the axis to save space and determines the repeatability. Different measuring systems are available depending on the requirements for measuring method, interface and resolution. You can find more information on Page 156. Optionally also with functional safety encoder.



9.2 Order code for linear tables HT-L


Continuation, order code for linear tables HT-L

- 1) More detailed information in chapter 21 from page 156 or in the "HIWIN MAGIC Distance Measuring Systems" assembly instructions".
- ^{2]} Details on connector orientation and position of the energy chain in section <u>22.4 from page 188</u>.
- ³⁾ Additional reference switches on request.
- ⁴⁾ Limitations of the maximum stroke possible, see <u>Table 21.1 on page 156</u>.
- ⁵⁾ The distance measuring system has a safety-related, analogue, incremental real-time signal.
- $^{\rm 6)}$ Max. possible stroke: 5,000 mm.
- 7) If the installation position is horizontal, the axis must be arranged so that the distance measuring system is at the top.
- 8) Option not available for HT100L.

Linear tables HT-L

9.3 Dimensions and specifications of HT100L

 $L_S \qquad \text{Carriage plate} \qquad \qquad R \qquad \qquad \text{Right}$

L Left 1a + 1b Block lubrication connectors

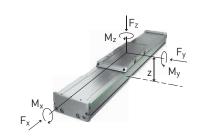
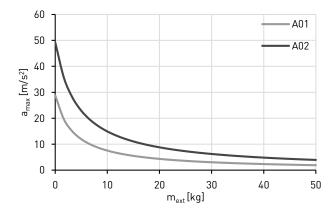

^{3]} Internal measuring system always on the right side of the axis. The positive direction of travel depends on the selected measuring system, see section 21.2 from page 158

Table 9.1 HT100L dimensions					
	Variant without cover		Variant with cover		
Motor size	A01	A02	A01	A02	
Total carriage length L_c [mm]	255	320	350	415	
Cover strip deflection A [mm]	_	_	47.5	47.5	
Switch distance B ₁ [mm]	113.5	113.5	161	161	
Switch distance B ₂ [mm]	36.5	101.5	84	149	
Max. stroke length L _{ST} [mm]	5,511	5,446	5,416	5,351	
Total length L _T [mm]	$L_{T} = L_{ST} + 319$	$L_T = L_{ST} + 384$	$L_{T} = L_{ST} + 414$	$L_{T} = L_{ST} + 479$	

¹⁾ Omitted for variant with energy chain 2) Drive interface shown: Option "D"; for other series, see section 22.4 from page 188

Table 9.2 Load data						
	Permissible load data		Theoretical load data			
Lifetime refer- ence value	10,000 km		100 km			
Motor size	A01	A02	A01	A02		
F _{ydynmax} 1) [N]	1,101	860	8,096	8,096		
F _{zdynmax} 1) [N]	1,101	860	8,096	8,096		
M _{xdynmax} [Nm]	35	27	255	255		
M _{ydynmax} [Nm]	96	103	704	967		
M _{zdynmax} [Nm]	96	103	704	967		
Load distance z [mm]	53.5	53.5	53.5	53.5		

¹⁾ Force must only act free of torque


Table 9.3 General technical data				
Repeatability ²⁾ [mm]	± 0.005			
Max. speed [m/s]	5			
Typical load capacity [kg]	20			
Maximum total length ^{2] 3]} [mm]	5,830			
Flatness 1) [mm/300 mm]	± 0.03			
Straightness 1) (mm/300 mm)	± 0.03			
Area moment of inertia of profile cross section I_x [mm ⁴]	282,903			
Area moment of inertia of profile cross section l _y [mm ⁴]	1,541,419			

1) Values ann	v with c	nrraennnd	inaly eng	rifiad moi	ıntina	curfaca
	, varnes ann	v willi t	กเเดอกกแก	IIIUUV SUEI	LIIICU IIIUL	IIIUIIU	Sunace

² Depending on distance measuring system (chapter <u>21</u>) and energy chain (section <u>22.4</u>)

Table 9.4 Guide	
Type of carriage	MGN09H × 4
Static load rating $C_0[N]$	4,020 × 4
Dynamic load rating C _{dyn 50 km} [N]	2,550 × 4

Table 9.5 Drive					
Motor size	A01	A02			
Motor type	LMSA01	LMSA02			
Continuous force [N]	52	104			
Peak force [N]	112	224			
Max. acceleration [m/s ²]	30	50			

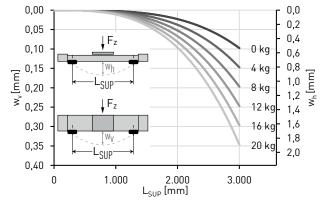


Fig. 9.1 Max. acceleration a_{max} as a function of the external payload m_{ext}

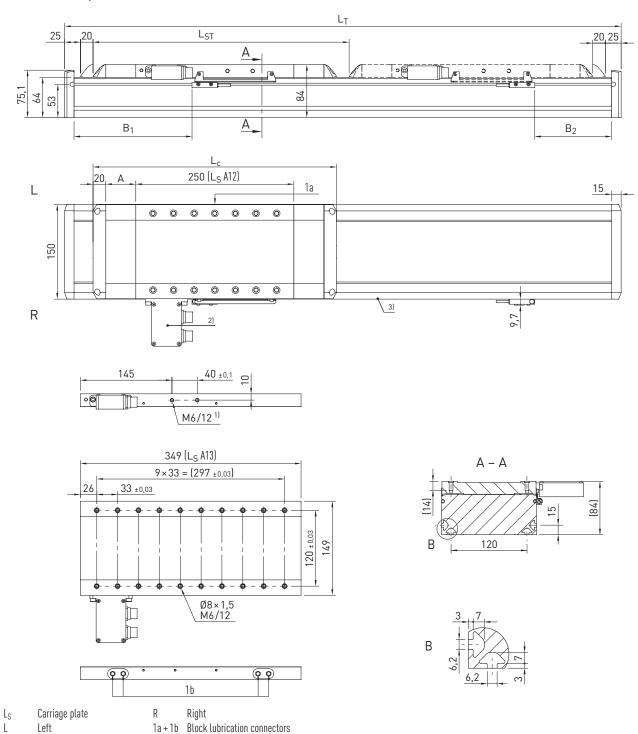
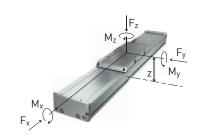

Fig. 9.2 Deflection w over unsupported axis length L_{SUP} under load capacity F_z

Table 9.6 Mechanical properties						
	Variant without cover		Variant with cover			
Motor size	A01	A02	A01	A02		
Mass of the carriage [kg]	1.97	2.78	2.26	3.06		
Mass at 0-stroke [kg]	4.15	5.42	5.02	6.30		
Mass per 1 m stroke [kg/m]	6.45		6.61			
Breakaway force F _l [N]	5.00		10.00			

³⁾ Long axes on request

Linear tables HT-L

9.4 Dimensions and specifications of HT150L


¹⁾ Does not apply to version with energy chain 2) Drive interface shown: Option "D"; for other versions, see section 22.4 from page 188

^{3]} Internal measuring system always on the right side of the axis. The positive direction of travel depends on the selected measuring system, see section 21.2 from page 158

* Internat ineasuring system atways on the hight sine of the positive unection of travet depends on the selected measuring system, see section 21.2 from page 130					
Table 9.7 HT150L dimensions					
	Variant without cover Variant with cover				
Motor size	A12	A13	A12	A13	
Total carriage length L_c [mm]	290	389	385	484	
Cover strip deflection A [mm]	_	_	48	48	
Switch distance B ₁ [mm]	138	138	185.5	185.5	
Switch distance B ₂ [mm]	73	172	121	220	
Max. stroke length L _{ST} [mm]	5,450	5,351	5,355	5,256	
Total length L _T [mm]	$L_T = L_{ST} + 380$	$L_{T} = L_{ST} + 479$	$L_{T} = L_{ST} + 475$	$L_{T} = L_{ST} + 574$	

Table 9.8 Load data				
	Permissible load data		Theoretical load data	
Lifetime refer- ence value	20,000 km		100 km	
Motor size	A12	A13	A12	A13
F _{ydynmax} 1) [N]	3,350	3,350	39,780	39,780
F _{zdynmax} 1) [N]	4,270	3,789	39,780	39,780
M _{xdynmax} [Nm]	201	178	1,870	1,870
M _{ydynmax} [Nm]	414	555	3,859	5,828
M _{zdynmax} [Nm]	325	491	3,859	5,828
Load distance z [mm]	51.4	51.4	51.4	51.4

¹⁾ Force must only act free of torque

Table 9.9 General technical data			
Repeatability ²⁾ [mm]	± 0.005		
Max. speed [m/s]	5		
Typical load capacity [kg]	80		
Maximum total length ^{2] 3]} [mm]	5,830		
Flatness 1) [mm/300 mm]	± 0.03		
Straightness 1) (mm/300 mm)	± 0.03		
Area moment of inertia of profile cross section I_x [mm 4]	907,754		
Area moment of inertia of profile cross section $I_y \left[mm^4 \right]$	7,417,610		

cross section I _y [mm*]	
1) Values apply with correspondingly speci	fied mounting surface

 $^{^{\}rm 2)}$ Depending on distance measuring system (chapter $\underline{\rm 21})$ and energy chain (section 22.4)

Table 9.10 Guide		
Type of carriage	QEH15CA × 4	
Static load rating C ₀ [N]	15,280 × 4	
Dynamic load rating $C_{dyn 50 km}[N]$ 12,530 × 4		

Table 9.11 Drive				
Motor size A12 A13				
Motor type	LMSA12	LMSA13		
Continuous force [N]	205	308		
Peak force [N]	579	868		
Max. acceleration [m/s ²]	60	80		

0,0

0,5

1,0

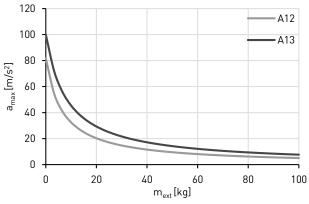
1,5

3,0

3,5

0 kg

16 kg


32 kg

48 kg

64 kg

80 kg

4.000

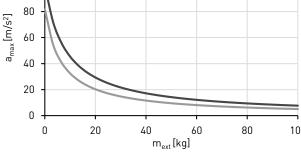


Fig. 9.3 Max. acceleration a_{max} as a function of the external payload m_{ext} Fig. 9.4 Deflection w over unsupported axis length L_{SUP} under load capacity F_{z}

 $\downarrow F_z$

 $\downarrow F_z$

-SUP

1.000

2.000 L_{SUP} [mm]

3.000

0,00

0,05

0,10

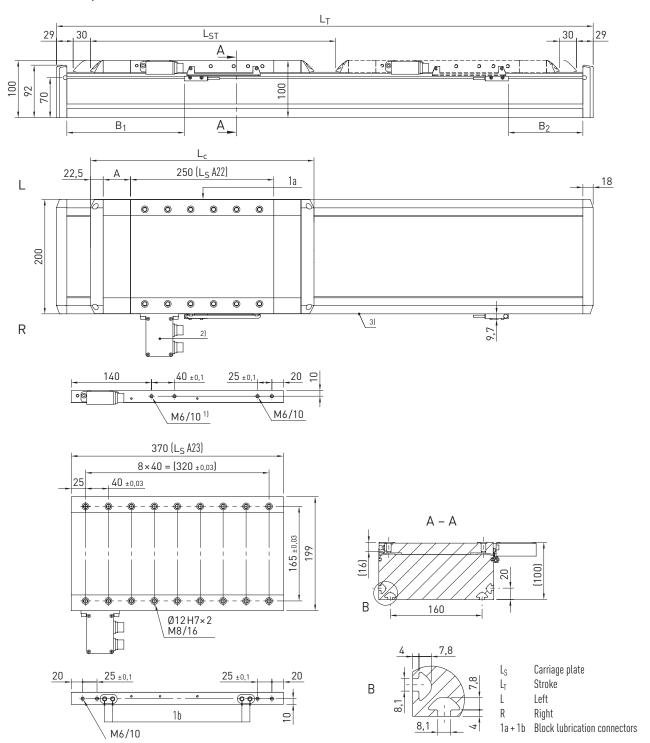
0,15

0,30

0,35

0,40

0,45

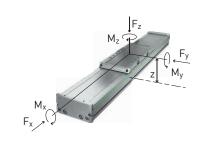

0

© 0,20 ≥ 0,25 ≥ 0,25

Table 9.12 Mechanical properties				
	Variant without cover		Variant with cover	
Motor size	A12	A13	A12	A13
Mass of the carriage [kg]	4.24	5.87	4.72	6.35
Mass at O-stroke [kg]	9.76	12.75	11.53	14.55
Mass per 1 m stroke [kg/m]	13.59 13.88			
Breakaway force F _l [N]	12.00		40.00	

³⁾ Long axes on request

9.5 Dimensions and specifications of HT200L


¹⁾ Omitted for variant with energy chain 2) Drive interface shown: Option "D"; for other series, see section 22.4 from page 188

^{3]} Internal measuring system always on the right side of the axis. The positive direction of travel depends on the selected measuring system, see section 21.2 from page 158

Table 9.13 HT200L dimensions					
	Variant without cover		Variant with cover		
Motor size	A22	A23	A22	A23	
Total carriage length L_c [mm]	295	415	390	510	
Cover strip deflection A [mm]	_	_	48	48	
Switch distance B ₁ [mm]	156.5	156.5	204	204	
Switch distance B ₂ [mm]	81.5	201.5	129	249	
Max. stroke length L _{ST} [mm]	5,423	5,303	5,328	5,208	
Total length L _T [mm]	L _T = L _{ST} + 413	$L_{T} = L_{ST} + 533$	$L_{T} = L_{ST} + 508$	$L_{T} = L_{ST} + 628$	

Table 9.14 Load data				
	Permissible load data		Theoretical load data	
Lifetime refer- ence value	20,000 km		100 km	
Motor size	A22	A23	A22	A23
F _{ydynmax} 1) [N]	7,800	7,800	95,244	95,244
F _{zdynmax} 1) [N]	10,602	9,640	95,244	95,244
M _{xdynmax} [Nm]	721	656	6,477	6,477
M _{ydynmax} [Nm]	1,007	1,494	9,048	14,763
M _{zdynmax} [Nm]	741	1,209	9,048	14,763
Load distance z [mm]	58.5	58.5	58.5	58.5

¹⁾ Force must only act free of torque

Table 9.15 General technical data				
Repeatability [mm] ²⁾	± 0.005			
Max. speed [m/s]	5			
Typical load capacity [kg]	150			
Maximum total length 2) 3) [mm]	5,836			
Flatness 1) [mm/300 mm]	± 0.03			
Straightness 1) [mm/300 mm]	± 0.03			
Area moment of inertia of profile cross section I_x [mm ⁴]	2,071,928			
Area moment of inertia of profile cross section I _y [mm ⁴]	19,658,810			

1) Values annly with	correspondingly specified	mounting surface

²⁾ Depending on distance measuring system (chapter <u>21</u>) and energy chain (section 22.4)

³⁾ Long axes on request

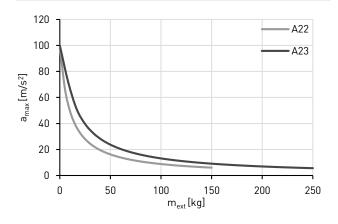


Fig. 9.5 Max. acceleration \textbf{a}_{max} as a function of the external payload \textbf{m}_{ext}

Table 9.16 Guide			
Type of carriage	QHH20CA×4		
Static load rating C ₀ [N]	33,860 × 4		
Dynamic load rating $C_{dyn 50 \text{ km}}[N]$ $30,000 \times 4$			

Table 9.17 Drive						
Motor size	A22	A23				
Motor type	LMSA22	LMSA23				
Continuous force [N]	362	544				
Peak force [N]	1,023	1,535				
Max. acceleration [m/s ²]	60	80				

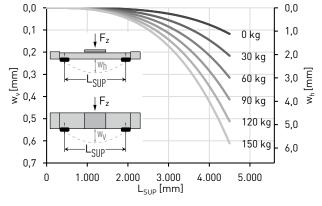
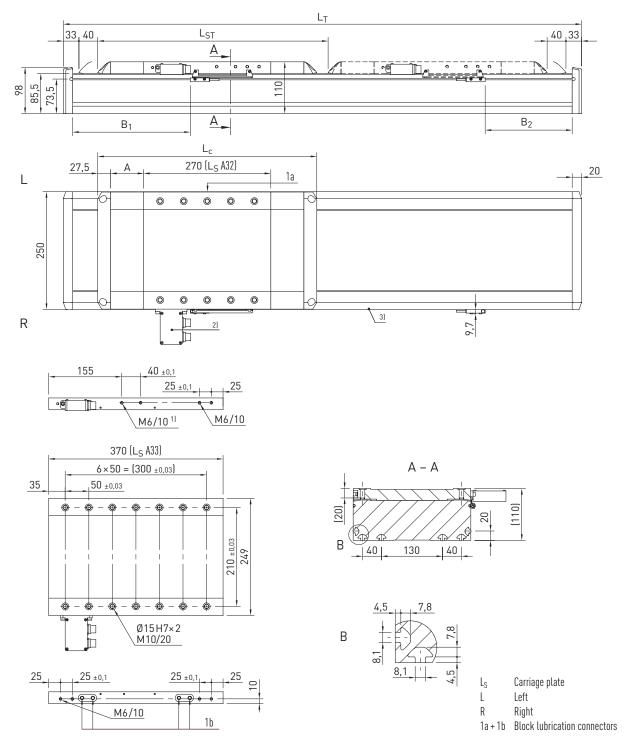
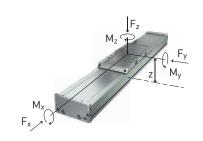



Fig. 9.6 Deflection w over unsupported axis length L_{SUP} under load capacity F_z

Table 9.18 Mechanical properties							
	Variant without cover		Variant with cover				
Motor size	A22	A23	A22	A23			
Mass of the carriage [kg]	6.69	9.46	7.28	10.14			
Mass at 0-stroke [kg]	16.42	21.82	19.06	24.59			
Mass per 1 m stroke [kg/m]	22.21		22.69				
Breakaway force F _l [N]	15.00		60.00				

9.6 Dimensions and specifications of HT250L


¹⁾ Omitted for variant with energy chain 2) Drive interface shown: Option "D"; for other series, see section 22.4 from page 188

^{3]} Internal measuring system always on the right side of the axis. The positive direction of travel depends on the selected measuring system, see section 21.2 from page 158

Table 9.19 HT250L dimensions							
	Variant without cover		Variant with cover				
Motor size	A32	A33	A32	A33			
Total carriage length L _c [mm]	325	425	465	565			
Cover strip deflection A [mm]	_	_	70	70			
Switch distance B ₁ [mm]	178.5	178.5	248.5	248.5			
Switch distance B ₂ [mm]	113.5	213.5	183.5	283.5			
Max. stroke length L _{ST} [mm]	5,469	5,369	5,329	5,229			
Total length L _T [mm]	$L_{T} = L_{ST} + 471$	$L_{T} = L_{ST} + 571$	L _T = L _{ST} + 611	$L_{T} = L_{ST} + 711$			

Table 9.20 Load data				
	Permissible load data		Theoretical load data	
Lifetime refer- ence value	20,000 km		100 km	
Motor size	A32	A33	A32	A33
F _{ydynmax} 1) [N]	11,600	11,600	133,024	133,024
F _{zdynmax} 1) [N]	14,610	13,165	133,024	133,024
M _{xdynmax} [Nm]	1,249	1,126	11,374	11,374
M _{ydynmax} [Nm]	1,424	1,942	12,970	19,621
M _{zdynmax} [Nm]	1,131	1,711	12,970	19,621
Load distance z [mm]	68	68	68	68

¹⁾ Force must only act free of torque

Table 9.21 General technical data	
Repeatability ²⁾ [mm]	± 0.005
Max. speed [m/s]	4.5
Typical load capacity [kg]	250
Maximum total length ^{2) 3)} [mm]	5,940
Flatness ^{1]} [mm/300 mm]	± 0.03
Straightness 1) [mm/300 mm]	± 0.03
Area moment of inertia of profile cross section I_x [mm ⁴]	3,265,771
Area moment of inertia of profile cross section I_y [mm 4]	39,262,043

 $^{^{\}rm 1)}$ Values apply with correspondingly specified mounting surface

³⁾ Long axes on request

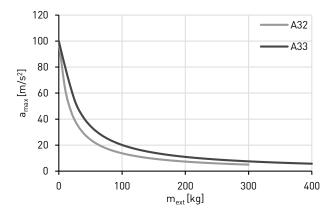


Fig. 9.7 Max. acceleration a_{max} as a function of the external payload m_{ext}

Table 9.22 Guide		
Type of carriage	QHH25CA×4	
Static load rating C_0 [N]	48,750 × 4	
Dynamic load rating $C_{dyn 50 \text{ km}}[N]$ 41,900 × 4		

Table 9.23 Drive				
Motor size	A32	A33		
Motor type	LMSA32	LMSA33		
Continuous force [N]	583	875		
Peak force [N]	1,646	2,469		
Max. acceleration [m/s ²]	60	80		

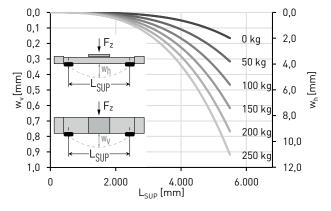


Fig. 9.8 Deflection w over unsupported axis length L_{SUP} under load capacity F_z

Table 9.24 Mechanical properties				
	Variant without cover		Variant with cover	
Motor size	A32	A33	A32	A33
Mass of the carriage [kg]	11.74	15.63	12.85	17.04
Mass at 0-stroke [kg]	26.72	33.72	31.83	39.18
Mass per 1 m stroke [kg/m]	30.82		31.41	
Breakaway force F _l [N]	20.00		70.00	

 $^{^{2)}}$ Depending on distance measuring system (chapter $\underline{21}$) and energy chain (section $\underline{22.4}$

Bridge axes HB-B

10. Bridge axes HB-B

10.1 Features of the HB-B bridge axes with toothed belt drive

The HIWIN bridge axes with toothed belt drive are flexible positioning modules with an integrated HIWIN double guide in O-arrangement. They are particularly suitable for applications where high feed force and high speeds are required.

Linear guideway

A high-quality HIWIN double guide safely transfers forces and torques from the carriage to the axis profile. Four blocks are used per carriage, which are guided on a two parallel, high-precision profile rails. The O arrangement of the balls ensures high torque load capacity and high load ratings.

Drive adaptation

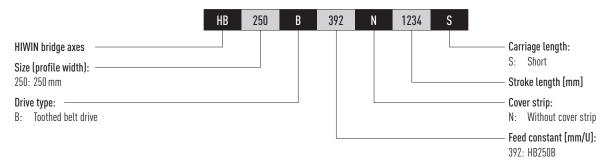
Thanks to its symmetrical design, the HIWIN the HIWIN bridge axis with toothed belt drive allows motors and gearboxes to be mounted on all four sides of the drive blocks. Suitable adapters for all common motors can be found in section 22.1 from page 159.

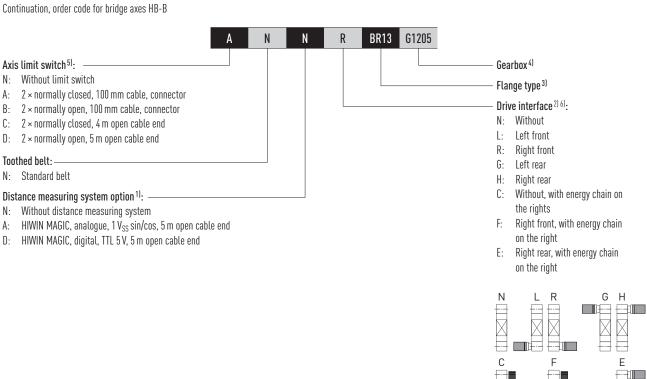
Toothed belt

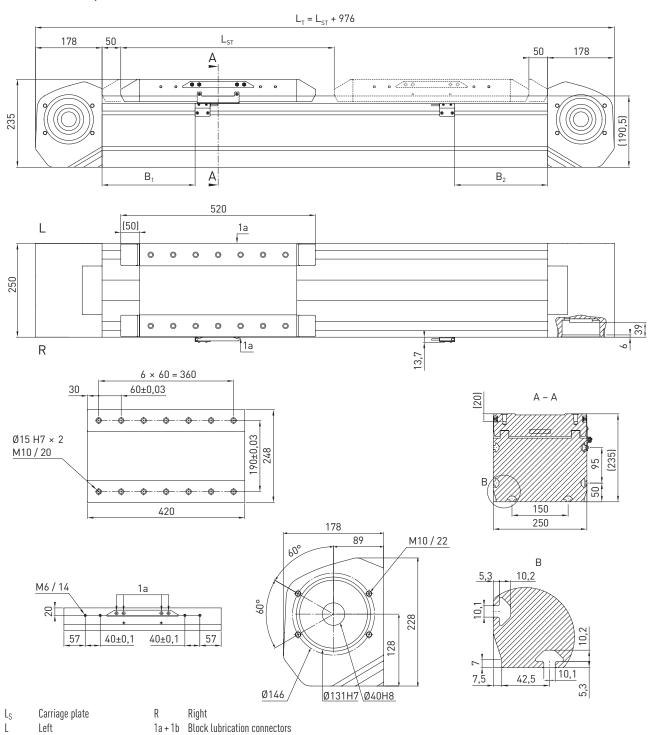
The toothed belt with modern high performance profiles (HTD shape) and reinforced steel tension members enables high power transmission while offering high skip resistance.

Energy chain

Generously dimensioned energy chains provide space for safely carrying the supply lines. They are extremely compact and save space when attached to the axis. For details on the orientation of the energy chain, see section 22.4 from page 188.


Carriage


The carriages have additional bore holes on each mounting hole to ensure ideal, reproducible alignment of the adjacent construction. You will find the matching centring sleeves in the accessories on Page 192. A grease nipple is provided on the carriage for each lubrication point for convenient maintenance of the linear axis.


10.2 Order code for bridge axes HB-B

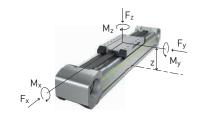
- 1) More detailed information in chapter 21 from page 156 or in the "HIWIN MAGIC Distance Measuring Systems" assembly instructions".
- 2) If no drive interface is selected, the order code ends after this point.
- 3) All flange types can be found in Table 22.2 from page 161. If no gearbox is selected, the order code ends after this point.
- 4) You can find suitable gearboxes for the HIWIN axes in Section 22.1.5.5 from page 170.
- 5) Additional reference switches on request.
- 6) Dimensions of the drive interface and the energy chain can be found on Page 186.

10.3 Dimensions and specifications of HB250B

¹⁾ Omitted for variant with energy chain 2) Drive interface shown: Option "D"; for other series, see section 22.4 from page 188

^{3]} Internal measuring system always on the right side of the axis. The positive direction of travel depends on the selected measuring system, see section 21.2 from page 158

Table 10.1 HB250B dimensions		
Total carriage length L _c [mm]	520	
Switch distance B ₁ [mm]	248.5	
Switch distance B ₂ [mm]	248.5	
Max. stroke length L _{ST} [mm]	5,280	
Total length L _T [mm]	$L_{T} = L_{ST} + 976$	



CGH25HA×4

69,070 × 4

 $42,200 \times 4$

Table 10.2 Load data			
	Permissible load data	Theoretical load data	
Lifetime refer- ence value	20,000 km	100 km	
F _{ydynmax} 1) [N]	11,600	133,977	
F _{zdynmax} 1) [N]	17,623	133,977	
M _{xdynmax} [Nm]	1,674	12,728	
M _{ydynmax} [Nm]	2,564	19,494	
M _{zdynmax} [Nm]	1,688	19,494	
Load distance z [mm]	54.3	54.3	

1) Longer axes on request

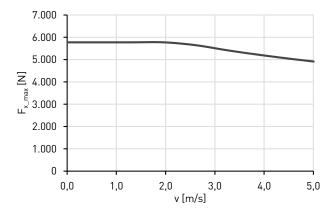

Table 10.3 General technical data	
Repeatability [mm]	± 0.05
Max. feed force Fx _{max} [N]	5,775
Max. speed [m/s]	5
Max. acceleration [m/s²]	30
Max. drive torque Ma _{max} [Nm]	360
Typical load capacity [kg]	350
Maximum total length 1] [mm]	6,256
Area moment of inertia of profile cross section I_x [mm ⁴]	34,509,373
Area moment of inertia of profile cross section I _y [mm ⁴]	80,997,444

Table 10.5 Drive	
Drive element	b55HTD14
Feed constant [mm/U]	392
Effective diameter of toothed helt nulley [mm]	124 78

Table 10.4 **Guide Type of carriage**

Static load rating C_0 [N]

Dynamic load rating $C_{dyn\ 50\ km}$ [N]

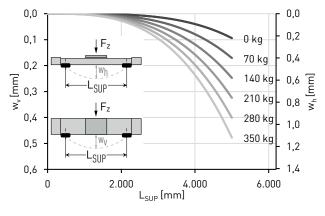


Fig. 10.1 Max. Feed force Fx_{max} as a function of the axis speed v

Fig. 10.2 Deflection w over unsupported axle length L_{SUP} under payload $\textbf{F}_{\textbf{z}}$

Table 10.6 Mechanical properties		
Mass of the carriage [kg]	12.92	
Mass at 0-stroke [kg]	74.21	
Mass per 1 m stroke [kg/m]	39.60	
J _{rot.} 1) [kgcm ²]	155.51	
Idle torque at 0-stroke [Nm]	7.17	
1) Rotational moment of inertia		

¹⁾ Force must only act free of torque

Bridge axes HB-R

11. Bridge axes HB-R

11.1 Features of the HB-R bridge axes with rack and pinion drive

The HIWIN bridge axes with rack and pinion drive are flexible positioning modules with an integrated HIWIN double guide in O-arrangement. They are particularly suitable for applications where high positioning accuracy and high speeds are required.

Linear guideway

A high-quality HIWIN double guide safely transfers forces and torques from the carriage to the axis profile. Four blocks are used per carriage, which are guided on a two parallel, high-precision profile rails. The O arrangement of the balls ensures high torque load capacity and high load ratings.

Drive adaptation

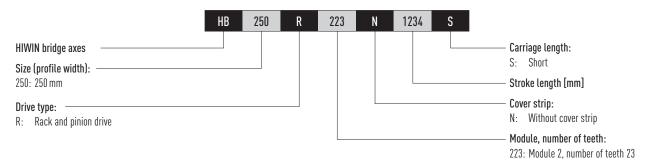
Thanks to its symmetrical design, the HIWIN the HIWIN bridge axis with toothed belt drive allows motors and gearboxes to be mounted on all four sides of the drive blocks. Suitable adapters for all common motors can be found in section 22.1 from page 159.

Rack and pinion

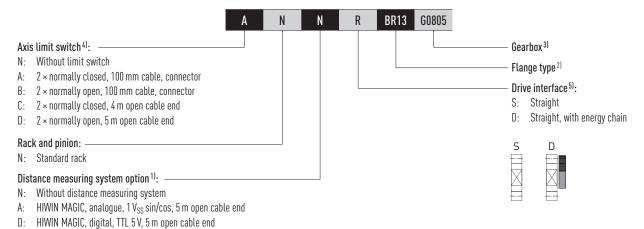
The rack and pinion ensures precise positioning, smooth running, high efficiency and maximum power density. The integrated lubrication pinion ensures that the rack and pinion drive is supplied with grease.

Energy chain

Generously dimensioned energy chains provide space for safely carrying the supply lines. They are extremely compact and save space when attached to the axis. For details on the orientation of the energy chain, see section 22.4 from page 188.


Carriage

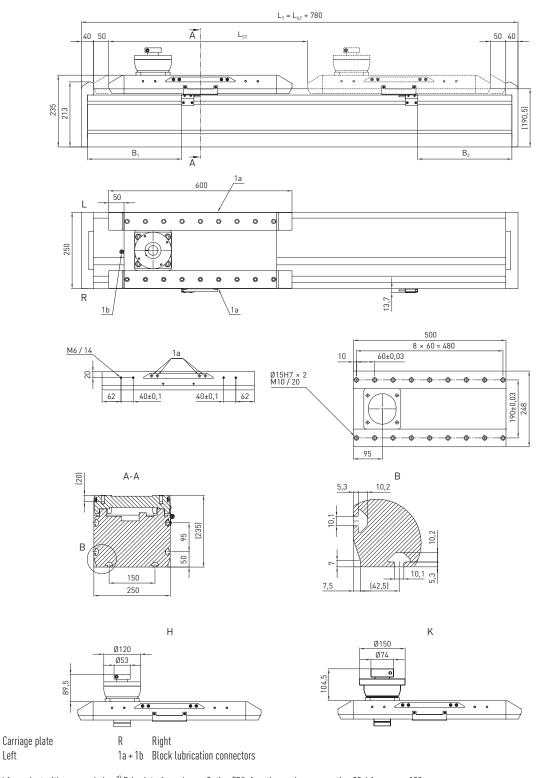
The carriages have additional bore holes on each mounting hole to ensure ideal, reproducible alignment of the adjacent construction. You will find the matching centring sleeves in the accessories on Page 192. A grease nipple is provided on the carriage for each lubrication point for convenient maintenance of the linear axis.



11.2 Order code for bridge axes HB-R

Continuation, order code for bridge axes HB-R

¹⁾ More detailed information in chapter 21 from page 156 or in the "HIWIN MAGIC Distance Measuring Systems" assembly instructions".


^{3]} All flange types can be found in <u>Table 22.2 from page 161</u>. If no gearbox is selected, the order code ends after this point.

⁴⁾ You can find suitable gearboxes for the HIWIN axes in section <u>22.1.5.5 from page 170</u>.

⁵⁾ Additional reference switches on request.

⁶⁾ Dimensions of the drive interface and the energy chain can be found on Page 186.

11.3 Dimensions and specifications of HB250R

 $^{^{1)}}$ Omitted for variant with energy chain $^{2)}$ Drive interface shown: Option "D"; for other series, see section $\underline{22.4}$ from page $\underline{188}$

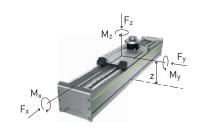

^{3]} Internal measuring system always on the right side of the axis. The positive direction of travel depends on the selected measuring system, see section 21.2 from page 158

Table 11.1 HB250R dimensions		
Total carriage length L _c [mm]	600	
Switch distance B ₁ [mm]	308.5	
Switch distance B ₂ [mm]	308.5	
Max. stroke length L _{ST} [mm]	5,160	
Total length L _T [mm]	$L_{T} = L_{ST} + 780$	

 $\mathsf{L}_{\mathbb{S}}$

Table 11.2 Load data			
	Permissible load data	Theoretical load data	
Lifetime reference value	20,000 km	100 km	
F _{ydynmax} 1) [N]	11,600	133,977	
F _{zdynmax} 1) [N]	14,429	133,977	
M _{xdynmax} [Nm]	1,371	12,728	
M _{ydynmax} [Nm]	2,619	24,317	
M _{zdynmax} [Nm]	2,105	24,317	
Load distance z [mm]	54.3	54.3	

¹⁾ Force must only act free of torque

Table 11.3 General technical data	
Repeatability [mm]	± 0,05
Max. feed force Fx _{max} [N]	4,300
Max. speed [m/s]	3
Max. acceleration [m/s²]	50
Max. drive torque Ma _{max} [Nm]	104.9
Typical load capacity [kg]	350
Maximum total length 1] [mm]	5,160
Area moment of inertia of profile cross section I _x [mm ⁴]	34,509,373
Area moment of inertia of profile cross section $I_y [mm^4]$	80,997,444

¹⁾ Longer axes on request

Table 11.4 Guide	
Type of carriage	CGH25HA × 4
Static load rating C ₀ [N]	69,070 × 4
Dynamic load rating C _{dyn 50 km} [N]	42,200 × 4

Table 11.5 Rack and pinion		
Toothing	Module 2, diagonally toothed	
Feed constant [mm/U]	153.34	
Effective diameter of pinion [mm]	48.81	
Number of teeth pinion	23	

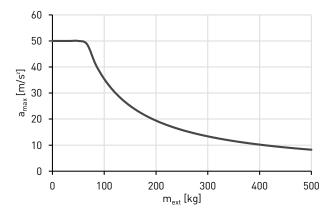


Fig. 11.1 Max. Acceleration a_{max} as a function of the external payload m_{ext}

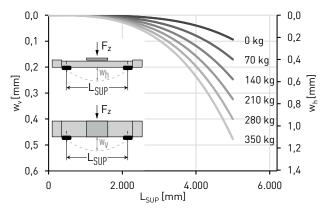


Fig. 11.2 Deflection w over unsupported axle length L_{SUP} under payload F_z

Table 11.6 Mechanical properties	
Mass of the carriage [kg]	12.43
Mass at 0-stroke [kg]	48.23
Mass per 1 m stroke [kg/m]	43.42
Breakaway force F _l [N]	20.00
1) Rotational moment of inertia	

Bridge axes HB-L

12. Bridge axes HB-L

12.1 Features of the HB-L bridge axes with linear motor

The HIWIN bridge axes with linear motor drive are flexible positioning modules with an integrated HIWIN double guide in O-arrangement. They are particularly suitable for precise positioning at high speed and high dynamics.

Linear guideway

A high-quality HIWIN double guide safely transfers forces and torques from the carriage to the axis profile. Four blocks are used per carriage, which are guided on a two parallel, high-precision profile rails. The O arrangement of the balls ensures high torque load capacity and high load ratings.

Positioning measuring systems

The distance measuring system is integrated into the inside of the axis to save space and determines the repeatability. Different measuring systems are available depending on the requirements for measuring method, interface and resolution. You can find more information on Page 156. Optionally also with functional safety encoder.

Linear motor

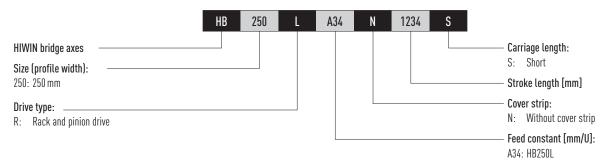
The integrated HIWIN linear motors ensure dynamic and precise positioning. Two motor sizes are available for each size in order to optimally meet the requirements for the required feed force.

Electric interface

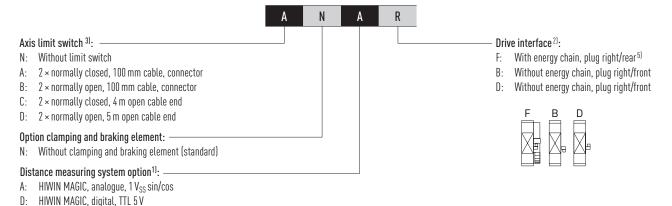
The quick-release connectors allow motor and encoder cables to be connected quickly and easily to the side of the carriage without tools. Depending on the installation situation and the desired cable routing, two different orientations of the connector are available as options.

Carriage

The carriages have additional bore holes on each mounting hole to ensure ideal, reproducible alignment of the adjacent construction. You will find the matching centring sleeves in the accessories on Page 192. A grease nipple is provided on the carriage for each lubrication point for convenient maintenance of the linear axis.


Energy chain

Generously dimensioned energy chains provide space for safely carrying the supply lines. They are extremely compact and save space when attached to the axis. For details on the orientation of the energy chain, see section 22.4 from page 188.



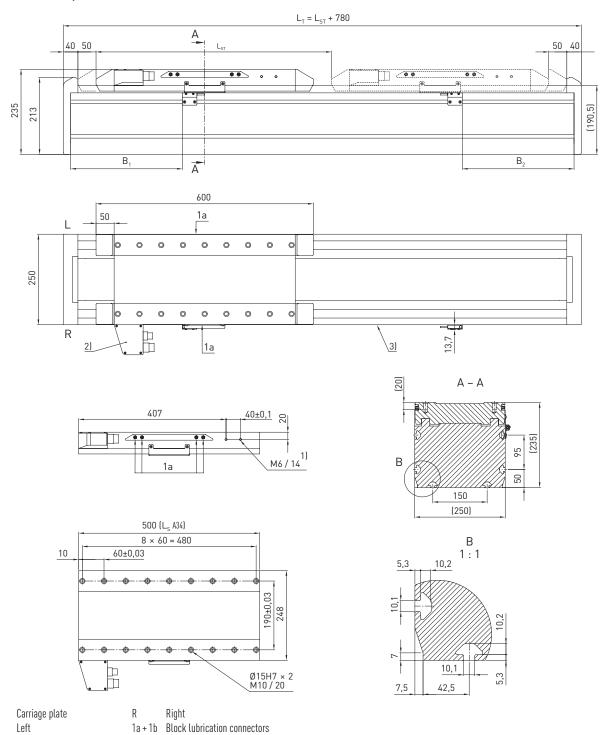
12.2 Order code for bridge axes HB-L

Continuation, order code for bridge axes HB-L

R: BML-S1G0, absolute, BiSS-C, 1V_{SS} sin/cos ⁴⁾

S: BML-S1G0, absolute, SSI⁵⁾

¹⁾ More detailed information in chapter 21 from page 156 or in the "HIWIN MAGIC Distance Measuring Systems" assembly instructions".


²⁾ Details on plug alignment and position of the energy chain in section <u>22.4 from page 188</u>.

³⁾ Additional reference switches on request.

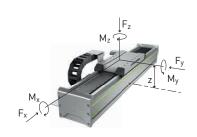
⁴⁾ The position measuring system has a safety-related, analogue, incremental real-time signal.

 $^{^{\}rm 5)}$ Max. possible stroke: 5,000 mm.

12.3 Dimensions and specifications of HB250L

¹⁾ Omitted for variant with energy chain 2) Drive interface shown: Option "D"; for other series, see section 22.4 from page 188

^{3]} Internal measuring system always on the right side of the axis. The positive direction of travel depends on the selected measuring system, see section 21.2 from page 158


Table 12.1 HB250L dimensions	
Total carriage length L _c [mm]	600
Switch distance B ₁ [mm]	308.5
Switch distance B ₂ [mm]	308.5
Max. stroke length L _{ST} [mm]	5,160
Total length L _T [mm]	$L_{T} = L_{ST} + 780$

 $\mathsf{L}_{\mathbb{S}}$

Table 12.2 Load data		
	Permissible load data	Theoretical load data
Lifetime refer- ence value	20,000 km	100 km
F _{ydynmax} 1) [N]	11,600	133,977
F _{zdynmax} 1) [N]	11,846	133,977
M _{xdynmax} [Nm]	1,125	12,728
M _{ydynmax} [Nm]	1,777	20,096
M _{zdynmax} [Nm]	1,740	20,096
Load distance z [mm]	54.3	54.3

¹⁾ Force must only act free of torque

Table 12.3 General technical data		
Repeatability 1) [mm]	± 0.005	
Max. speed [m/s]	4.5	
Typical load capacity [kg]	350	
Maximum total length ^{2) 3)} [mm]	5,940	
Flatness (mm/300mm) 1)	±0.03	
Straightness (mm/300mm) 1)	±0.03	
Area moment of inertia of profile cross section I _x [mm ⁴]	34.509.373	
Area moment of inertia of profile cross section I_y [mm 4]	80.997.444	

¹⁾ Values apply with correspondingly specified mounting surface

Table 12.4 Guide	
Type of carriage	CGH25HA × 4
Static load rating C ₀ [N]	69,070 × 4
Dynamic load rating C _{dyn 50 km} [N]	42,200 × 4

Table 12.5 Drive		
Motor size	A34	
Drive element	LMSA34	
Continuous force [N]	1,166	
Peak force [N]	3,292	
Max. acceleration [m/s²]	80	

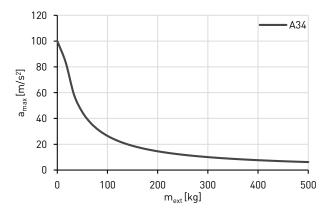


Fig. 12.1 Max. Acceleration a_{max} as a function of the external payload m_{ext}

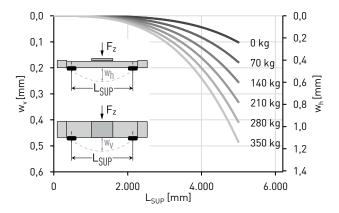


Fig. 12.2 Deflection w over unsupported axle length $L_{\text{SUP}}\,$ under payload F_z

Table 12.6 Mechanical properties		
Mass of the carriage [kg]	20.2	
Mass at 0-stroke [kg]	59.94	
Mass per 1 m stroke [kg/m]	47.66	
Breakaway force F _l [N]	60	

²⁾ Dependent on stroke measuring system (chapter 17) and energy chain (section 18.4)

³⁾ Longer axes on request

Cantilever axes HC-B

13. Cantilever axes HC-B

13.1 Properties of cantilever axes HC-B with toothed belt drive

The HIWIN cantilever axes with toothed belt drive are flexible linear units in which the drive block is stationary while the light cantilever moves. They are especially suitable for vertical applications where high dynamics and high speeds are required.

Linear guideway

High-quality HIWIN linear guideways with two blocks safely transfer forces and torques from the cantilever to the drive block.

The CG guide with 0-arrangement of the ball track also ensures increased rigidity and high torque load capacity in the HC060B, HC080B and HC100B sizes.

Drive connection

Thanks to the symmetrical design, the HIWIN cantilever axis allows motors and gearboxes to be mounted on both sides of the drive block.

Additional journals, which are available as accessories (see <u>Page 199</u>), can be used to mount additional drives and outputs.

Toothed belt

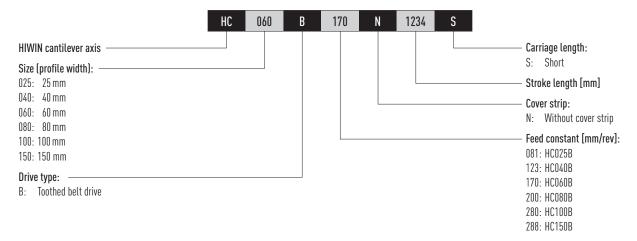
The toothed belt with modern high performance profiles (HTD shape) and reinforced steel tension members enables high power transmission while offering high skip resistance.

Lubrication

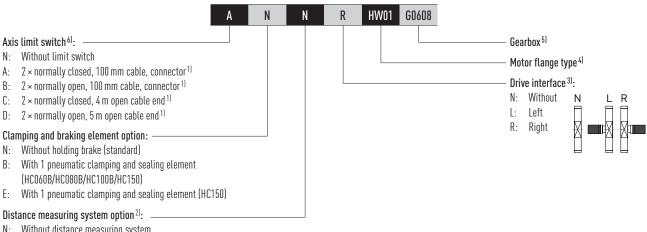
For convenient maintenance of the linear axis, a separate grease nipple is installed on the left and right of the drive block for each lubrication point. This ensures optimum accessibility for relubrication, even under difficult installation conditions.

Mounting

The drive block as well as the interfaces for attaching the load capacity on both sides of the cantilever have additional bore holes on each mounting hole. This ensures ideal, reproducible alignment of the adjacent construction. You will find the matching centring sleeves in the accessories on Page 192.


Clamping and braking element

The clamping and braking element can be controlled via a pneumatic connection on the drive block. Clamping onto the profile rail is fail-safe as soon as there is no more compressed air at the connection. Particularly in vertical applications, clamping may be necessary to securely fix the axis at standstill.



13.2 Order code for cantilever axes HC-B

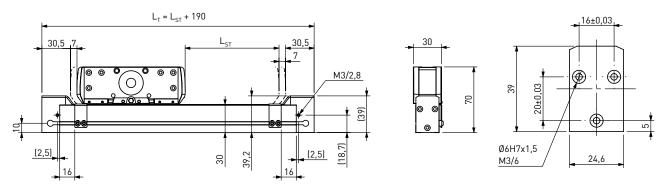
Continuation, order code for cantilever axes HC-B

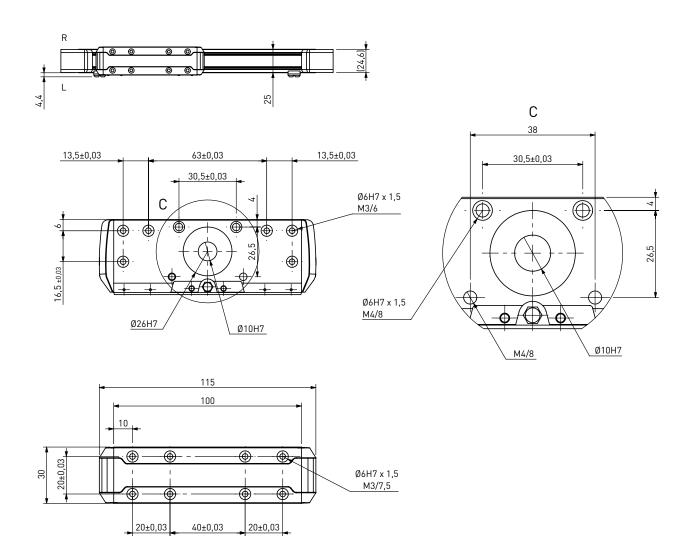
- N: Without distance measuring system
- A: HIWIN MAGIC, analogue, 1 V_{SS} sin/cos, 5 m open cable end
- D: HIWIN MAGIC, digital, TTL 5 V, 5 m open cable end

¹⁾ HCO25B: A: 2 × normally closed, 200 mm cable, connector, C: 2 × normally closed, 2 m open cable end; B and D: not available.

²⁾ More detailed information in chapter <u>21 from page 156</u> or in the "HIWIN MAGIC Distance Measuring Systems" assembly instructions".

³⁾ If no drive interface is selected, the order code ends after this digit.


⁴⁾ You can find all flange types in <u>Table 22.1 from page 160</u>. If no gearbox is selected, the order code ends after this digit.


⁵⁾ You can find the right gearbox for the HIWIN axes in section 22.1.5.5 from page 170.

⁶⁾ Additional reference switches on request.

Cantilever axes HC-B

13.3 Dimensions and specifications of HC025B

 $\begin{array}{ll} L_{ST} & Stroke \\ L_T & Total \ length \\ L & Left \\ R & Right \end{array}$

MGN09C×2

2,550 × 2

1,860 × 2

Table 13.1 Load data		
	Permissible load data	Theoretical load data
Lifetime refer- ence value	5,000 km	100 km
F _{ydynmax} 1) [N]	616	2,953
F _{zdynmax} 1) [N]	616	2,953
M _{xdynmax} [Nm]	2.8	14
M _{ydynmax} [Nm]	21	99
M _{zdynmax} [Nm]	21	99

¹⁾ Force must only act free of torque

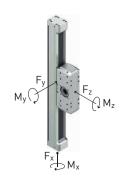


Table 13.3 **Guide Type of carriage**

Static load rating C₀ [N]

Dynamic load rating C_{dyn 50 km} [N]

Table 13.2 General technical data		
Repeatability [mm]	± 0.05	
Max. feed force $F_{x_{max}}[N]$	241	
Max. speed [m/s]	5	
Max. acceleration [m/s ²]	30	
Max. drive torque M _{A_max} [Nm]	3.1	
Typical load capacity [kg]	2	
Maximum vertical stroke length 1) [mm]	300	
Maximum horizontal stroke length 1] [mm]	200	
Area moment of inertia of profile cross section I_{χ} [mm ⁴]	18,706	
Area moment of inertia of profile cross section I_y [mm 4]	19,299	

Table 13.4 Drive	
Drive element B12HTD3	
Feed constant [mm/U] 81	
Toothed belt effective diameter [mm]	25.78

¹⁾ Longer axes on request

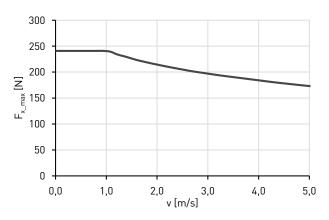


Fig. 13.1 Max. feed force $\mathbf{F}_{\mathbf{x}_\text{max}}$ depending on axis speed \mathbf{v}

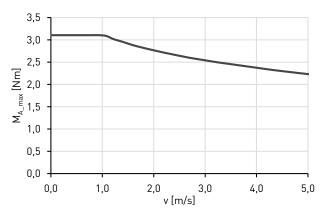
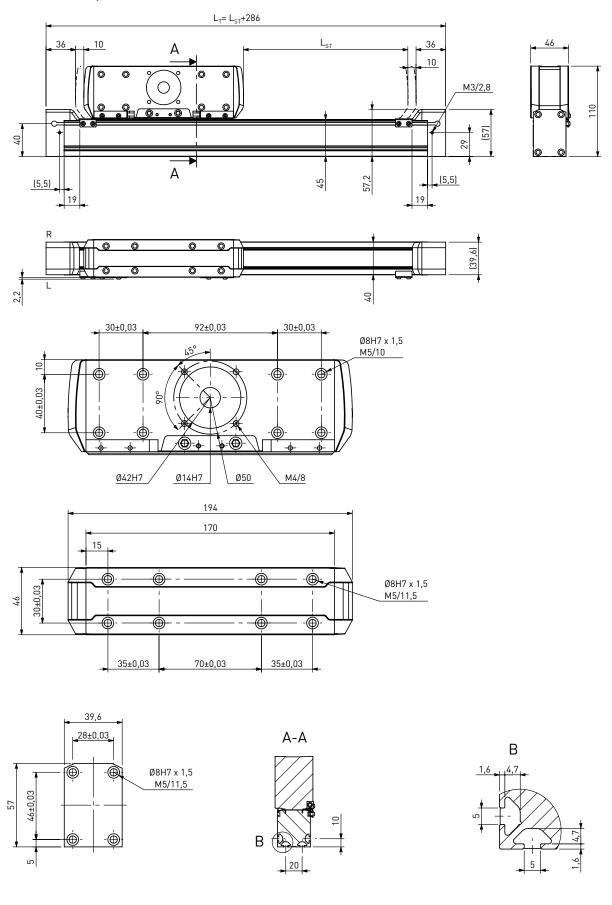



Fig. 13.2 Max. drive force M_{A_max} depending on axis speed v

Table 13.5 Mechanical properties		
Mass at 0-stroke [kg]	0.72	
Mass per 100 mm stroke [kg/100 mm]	0.13	
Mass of cantilever at 0-stroke [kg]	0.30	
Mass of cantilever per 100 mm stroke [kg/100 mm]	0.13	
J _{rot.} 1) [kgcm ²]	0.16	
Idle torque at O-stroke [Nm]	0.15	
1) Rotational moment of inertia		

Cantilever axes HC-B

13.4 Dimensions and specifications of HC040B

 $L_{ST} \hspace{0.5cm} Stroke \hspace{0.5cm} L_{T} \hspace{0.5cm} Total \hspace{0.5cm} length \hspace{0.5cm} L \hspace{0.5cm} Left \hspace{0.5cm} R \hspace{0.5cm} Right$

MGN15C×2

5,590 × 2 4,610 × 2

Table 13.6 Load data		
	Permissible load data	Theoretical load data
Lifetime reference value	10,000 km	100 km
F _{ydynmax} 1) [N]	1,213	7,318
F _{zdynmax} 1) [N]	1,213	7,318
M _{xdynmax} [Nm]	9.8	59
M _{ydynmax} [Nm]	78	468
M _{zdynmax} [Nm]	78	468

¹⁾ Force must only act free of torque

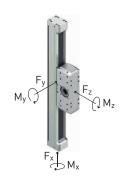


Table 13.8 **Guide**

Type of carriage Static load rating $C_0[N]$

Dynamic load rating $C_{dyn\ 50\ km}$ [N]

Table 13.7 General technical data	
Repeatability [mm]	± 0.05
Max. feed force $F_{x_{max}}[N]$	404
Max. speed [m/s]	5
Max. acceleration [m/s ²]	30
Max. drive torque M _{A_max} [Nm]	7.9
Typical load capacity [kg]	8
Maximum vertical stroke length 1) [mm]	500
Maximum horizontal stroke length 1) [mm]	400
Area moment of inertia of profile cross section I_x [mm ⁴]	94,400
Area moment of inertia of profile cross section I_y [mm 4]	102,030

Table 13.9 Drive	
Drive element B20HTD3	
Feed constant [mm/U]	123
Toothed belt effective diameter [mm]	39.15

¹⁾ Longer axes on request

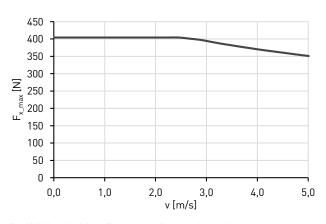


Fig. 13.3 Max. feed force $\textbf{F}_{\textbf{x}_\text{max}}$ depending on axis speed v

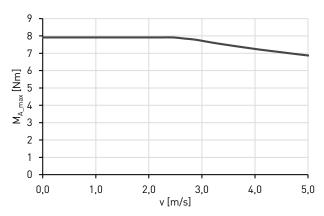
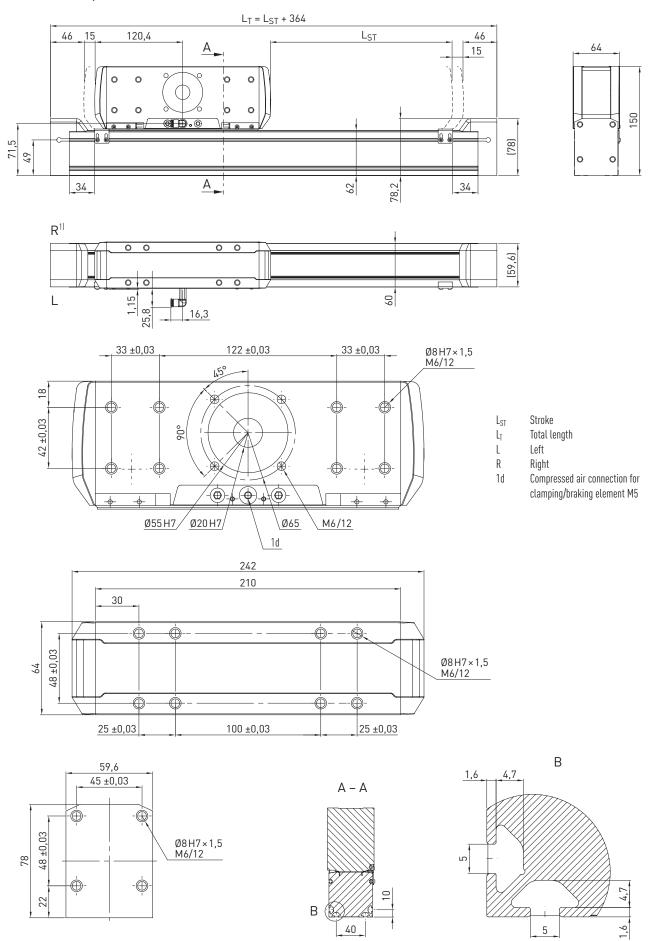
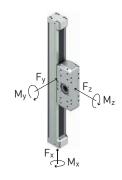



Fig. 13.4 Max. drive force $\mathbf{M}_{\mathbf{A}_{_\mathbf{max}}}$ depending on axis speed v

Table 13.10 Mechanical properties		
Mass at 0-stroke [kg]	2.33	
Mass per 100 mm stroke [kg/100 mm]	0.28	
Mass of cantilever at 0-stroke [kg]	0.91	
Mass of cantilever per 100 mm stroke [kg/100 mm]	0.28	
J _{rot.} ¹⁾ [kgcm ²]	0.44	
Idle torque at 0-stroke [Nm]	0.20	
1) Rotational moment of inertia		

Cantilever axes HC-B

13.5 Dimensions and specifications of HC060B



¹⁾ In the horizontal installation position, the axis must be aligned so that the right-hand side of the axis is at the top.

Table 13.11 Load data		
	Permissible load data	Theoretical load data
Lifetime refer- ence value	15,000 km	100 km
F _{ydynmax} 1) [N]	2,152	23,335
F _{zdynmax} 1) [N]	3,378	23,335
M _{xdynmax} [Nm]	27	189
M _{ydynmax} [Nm]	243	1,680
M _{zdynmax} [Nm]	155	1,680

¹⁾ Force must only act free of torque

Table 13.12 General technical data	
Repeatability [mm]	± 0.05
Max. feed force $F_{x_{max}}[N]$	997
Max. speed [m/s]	5
Max. acceleration [m/s ²]	30
Max. drive torque M _{A_max} [Nm]	27
Typical load capacity [kg]	16
Maximum vertical stroke length 1) [mm]	800
Maximum horizontal stroke length 1] [mm]	600
Area moment of inertia of profile cross section I_x [mm ⁴]	431,271
Area moment of inertia of profile cross section I_y [mm 4]	536,119

Table 13.13 Guide		
Type of carriage	CGL15CA × 2	
Static load rating C ₀ [N]	23,470 × 2	
Dynamic load rating C _{dyn 50 km} [N]	14,700 × 2	

Table 13.14 Drive	
Drive element	B30HTD5
Feed constant [mm/U]	170
Toothed belt effective diameter [mm] 54.11	

Table 13.15 Clamping/Braking element	
Holding force [N]	400
Operating pressure [bar]	5.5-6.5

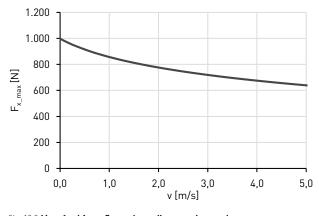


Fig. 13.5 Max. feed force $\textbf{F}_{\textbf{x}_\text{max}}$ depending on axis speed v

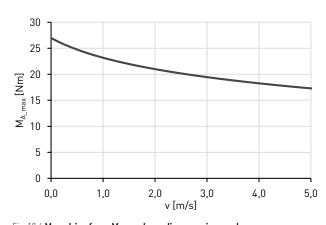
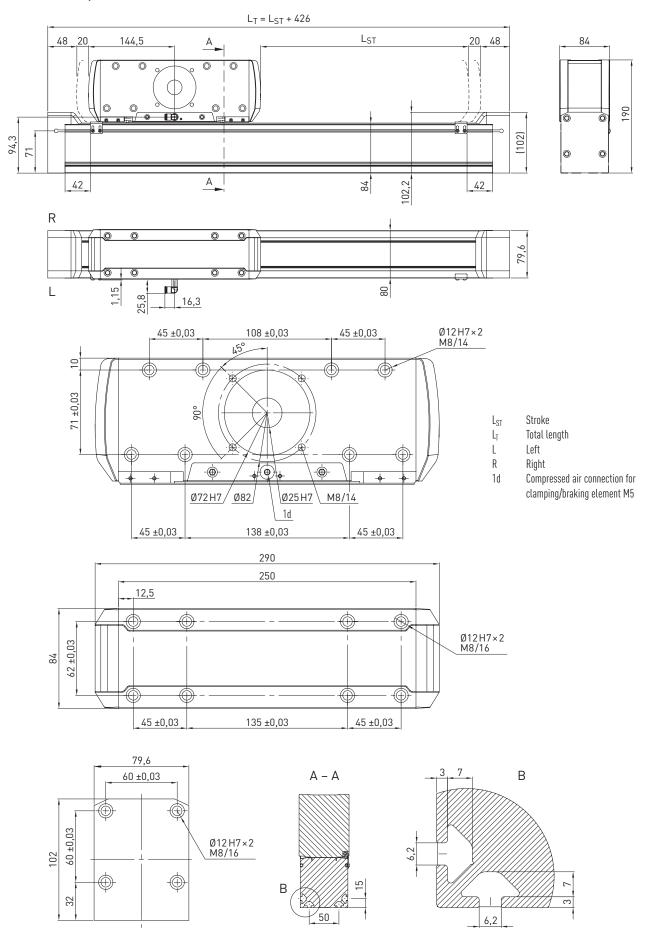



Fig. 13.6 Max. drive force $\mathbf{M}_{\mathbf{A_max}}$ depending on axis speed \mathbf{v}

Table 13.16 Mechanical properties		
Mass at 0-stroke [kg]	5.44	
Mass per 100 mm stroke [kg/100 mm]	0.52	
Mass of cantilever at 0-stroke [kg]	2.23	
Mass of cantilever per 100 mm stroke [kg/100 mm]	0.52	
J _{rot.} ^{1]} [kgcm ²]	2.41	
Idle torque at 0-stroke [Nm]	0.60	
1) Rotational moment of inertia		

Cantilever axes HC-B

13.6 Dimensions and specifications of HC080B

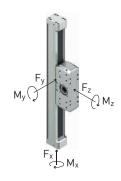


Table 13.17 Load data			
	Permissible load data	Theoretical load data	
Lifetime refer- ence value	15,000 km	100 km	
F _{ydynmax} 1) [N]	3,855	43,019	
F _{zdynmax} 1) [N]	6,228	43,019	
M _{xdynmax} [Nm]	63	434	
M _{ydynmax} [Nm]	508	3,506	
M _{zdynmax} [Nm]	314	3,506	

¹⁾ Force must only act free of torque

Table 13.18 General technical data		
Repeatability [mm]	± 0.05	
Max. feed force $F_{x_{max}}[N]$	1,330	
Max. speed [m/s]	5	
Max. acceleration [m/s ²]	30	
Max. drive torque M _{A_max} [Nm]	42.3	
Typical load capacity [kg]	30	
Maximum vertical stroke length 1) [mm]	1,200	
Maximum horizontal stroke length 1] [mm]	800	
Area moment of inertia of profile cross section I_x [mm ⁴]	1,394,922	
Area moment of inertia of profile cross section $I_y[\text{mm}^4]$	1,758,779	

^{1]} Longer axes on request

Table 13.19 Guide	
Type of carriage	CGH20CA × 2
Static load rating C ₀ [N]	36,680 × 2
Dynamic load rating $C_{dyn 50 km}$ [N]	27,100 × 2

Table 13.20 Drive		
Drive element B40HTD5		
Feed constant [mm/U] 200		
Toothed belt effective diameter [mm]	63.66	

Table 13.21 Clamping/Braking element		
Holding force [N] 650		
Operating pressure [bar]	5.5-6.5	

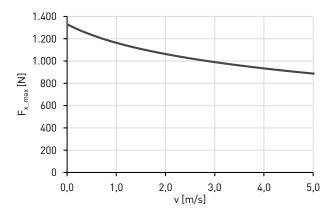


Fig. 13.7 Max. feed force $\textbf{F}_{\textbf{x}_{\textbf{max}}}$ as a function of axis speed v

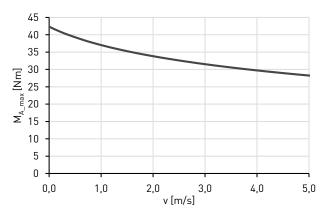
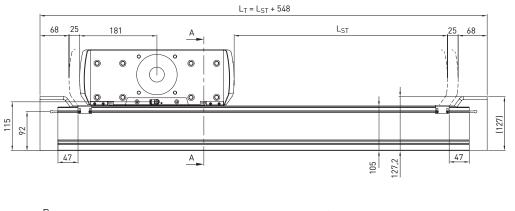
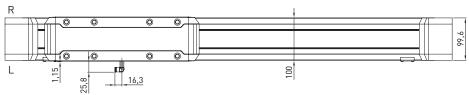
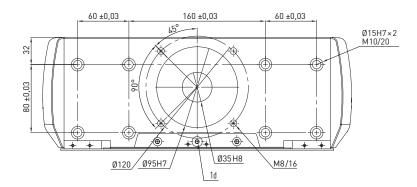
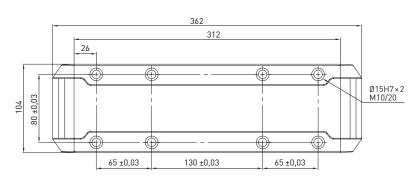



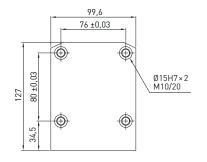
Fig. 13.8 Max. drive force $\mathbf{M}_{\mathbf{A}_{\text{max}}}$ as a function of axis speed \mathbf{v}

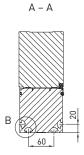

Table 13.22 Mechanical properties			
Mass at 0-stroke [kg]	10.15		
Mass per 100 mm stroke [kg/100 mm]	0.90		
Mass of cantilever at 0-stroke [kg]	4.35		
Mass of cantilever per 100 mm stroke [kg/100 mm]	0.90		
J _{rot.} ¹⁾ [kgcm ²]	5.49		
Idle torque at 0-stroke [Nm]	1.40		
1) Rotational moment of inertia			

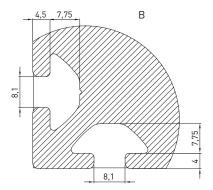

Cantilever axes HC-B

13.7 Dimensions and specifications of HC100B






 $\begin{array}{ll} L_{ST} & Stroke \\ L_{T} & Total \ length \end{array}$


L Left R Right

1d Compressed air connection for clamping/braking element M5

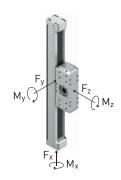


Table 13.23 Load data			
	Permissible load data	Theoretical load data	
Lifetime reference value	15,000 km	100 km	
F _{ydynmax} 1) [N]	6,979	55,400	
F _{zdynmax} 1) [N]	8,021	55,400	
M _{xdynmax} [Nm]	91	629	
M _{ydynmax} [Nm]	842	5,817	
M _{zdynmax} [Nm]	733	5,817	

¹⁾ Force must only act free of torque

Table 13.24 General technical data		
Repeatability [mm]	± 0.05	
Max. feed force F _{x_max} [N]	2,667	
Max. speed [m/s]	5	
Max. acceleration [m/s ²]	30	
Max. drive torque M _{A_max} [Nm]	118.8	
Typical load capacity [kg]	60	
Maximum vertical stroke length 1) [mm]	1,800	
Maximum horizontal stroke length 1] [mm]	1,200	
Area moment of inertia of profile cross section I_x [mm ⁴]	3,290,845	
Area moment of inertia of profile cross section $\rm I_y [mm^4]$	4,100,279	

1,	^l Longer	axes	on	reques	st

Table 13.25 Guide	
Type of carriage	CGL25CA × 2
Static load rating C_0 [N]	52,820 × 2
Dynamic load rating C _{dyn 50 km} [N]	34,900 × 2

Table 13.26 Drive		
Drive element B40HTD8		
Feed constant [mm/U] 280		
Toothed belt effective diameter [mm]	89.13	

Table 13.27 Clamping/Braking element		
Holding force [N] 750		
Operating pressure [bar]	5.5-6.5	

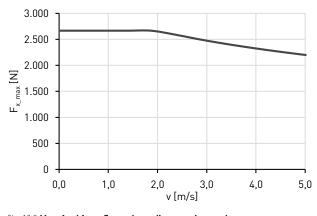


Fig. 13.9 Max. feed force $\textbf{F}_{\textbf{x}_\text{max}}$ depending on axis speed v

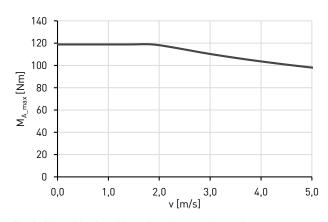
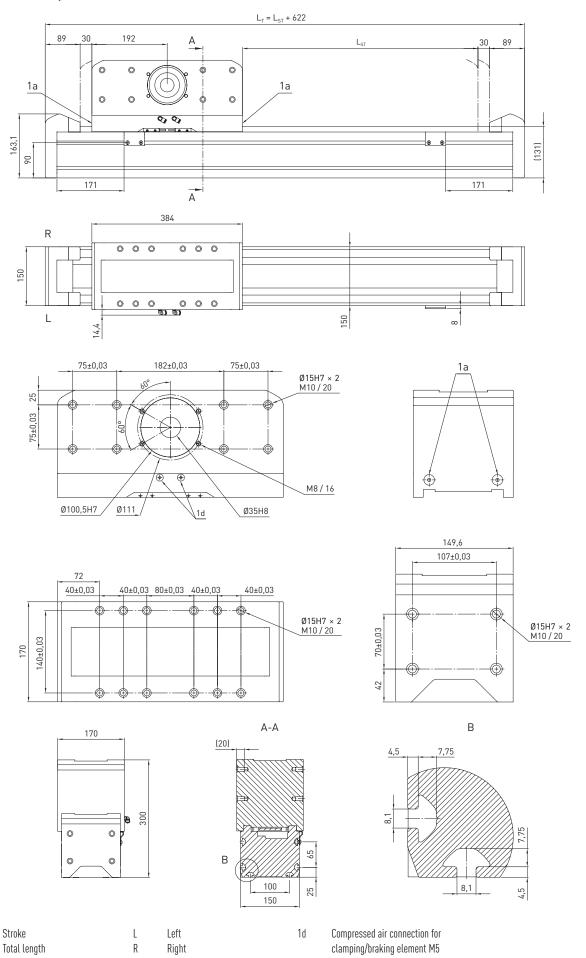
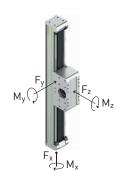



Fig. 13.10 Max. drive force M_{A_max} depending on axis speed \boldsymbol{v}

Table 13.28 Mechanical properties		
Mass at 0-stroke [kg]	20.12	
Mass per 100 mm stroke [kg/100 mm]	1.32	
Mass of cantilever at 0-stroke [kg]	8.40	
Mass of cantilever per 100 mm stroke [kg/100 mm]	1.32	
J _{rot.} ^{1]} [kgcm ²]	28.99	
Idle torque at 0-stroke [Nm]	3.00	
1) Rotational moment of inertia		

Cantilever axes HC-B

13.8 Dimensions and specifications of HC150B


 L_{ST}

 $L_{\overline{I}}$

Table 13.29 Load data			
	Permissible load data	Theoretical load data	
Lifetime refer- ence value	15,000 km	100 km	
F _{ydynmax} 1) [N]	9,485	95,244	
F _{zdynmax} 1) [N]	13,789	95,244	
M _{xdynmax} [Nm]	446	5,524	
M _{ydynmax} [Nm]	1,755	12,125	
M _{zdynmax} [Nm]	1,207	12,125	

¹⁾ Force must only act free of torque

Table 13.30 General technical data		
Repeatability [mm]	± 0.05	
Max. feed force $F_{x_{max}}[N]$	4,000	
Max. speed [m/s]	5	
Max. acceleration [m/s ²]	30	
Max. drive torque M _{A_max} [Nm]	183.3	
Typical load capacity [kg]	80	
Maximum vertical stroke length 1) [mm]	2,000	
Maximum horizontal stroke length 1] [mm]	1,400	
Area moment of inertia of profile cross section I_x [mm ⁴]	7,556,719	
Area moment of inertia of profile cross section $\rm I_y [mm^4]$	13,470,080	

1,	^l Longer	axes	on	reques	st

Table 13.31 Guide	
Type of carriage	QHH20CA × 4
Static load rating C ₀ [N]	33,860 × 4
Dynamic load rating C _{dyn 50 km} [N]	30,000 × 4

Table 13.32 Drive	
Drive element	b60HTD8
Feed constant [mm/U]	288
Toothed belt effective diameter [mm]	91.67

Table 13.33 Clamping/Braking element		
Holding force [N] 650 / Element		
Operating pressure [bar]	5.5-6.5	

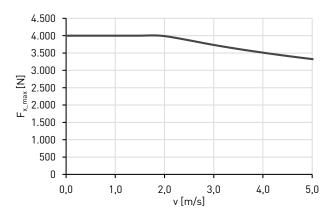


Fig. 13.11 Max. feed force $\textbf{F}_{\textbf{x}_\text{max}}$ depending on axis speed v

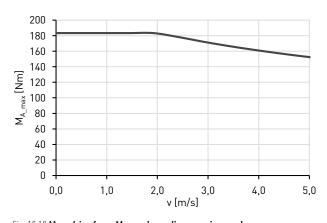


Fig. 13.12 Max. drive force $\mathbf{M}_{\mathbf{A}_{\text{max}}}$ depending on axis speed \mathbf{v}

Table 13.34 Mechanical properties		
Mass at 0-stroke [kg]	36.69	
Mass per 100 mm stroke [kg/100 mm]	1.83	
Mass of cantilever at 0-stroke [kg]	13.88	
Mass of cantilever per 100 mm stroke [kg/100 mm]	1.83	
J _{rot.} ^{1]} [kgcm ²]	48.37	
Idle torque at 0-stroke [Nm]	5.50	
1) Rotational moment of inertia		

Cantilever axes HC-R

14. Cantilever axes HC-R

14.1 Features of the HC-R cantilever axes with rack and pinion drive

HIWIN cantilever axes with rack and pinion drive are flexible positioning modules with an integrated HIWIN double guide. They are particularly suitable for applications where high feed force and high speeds are required.

Linear guideway

A high-quality HIWIN double guide safely transfers forces and torques from the carriage to the axis profile. Four blocks are used per carriage, which are guided on a two parallel, high-precision profile rails. The SynchMotionTM technology with ball chain also ensures good synchronisation and smooth running.

Drive adaptation

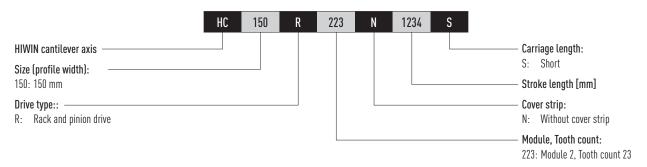
HIWIN cantilever axes with rack and pinion drive are equipped with gearboxes as standard. Suitable adapters for all common motors can be found in section 22.1 from page 159.

Rack and pinion

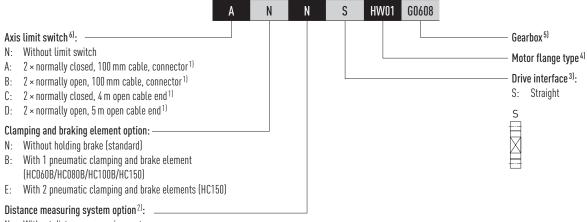
The rack and pinion ensures precise positioning, smooth running, high efficiency and maximum power density. The integrated lubrication pinion ensures that the rack and pinion drive is supplied with grease.

Clamping and braking element

The clamping and braking element can be controlled via a pneumatic connection on the drive block. Clamping onto the profile rail is fail-safe as soon as there is no more compressed air at the connection. Particularly in vertical applications, clamping may be necessary to securely fix the axis at standstill.


Mounting

The drive block as well as the interfaces for attaching the load capacity on both sides of the cantilever have additional bore holes on each mounting hole. This ensures ideal, reproducible alignment of the adjacent construction. You will find the matching centring sleeves in the accessories on Page 192.



14.2 Order code for cantilever axes HC-R

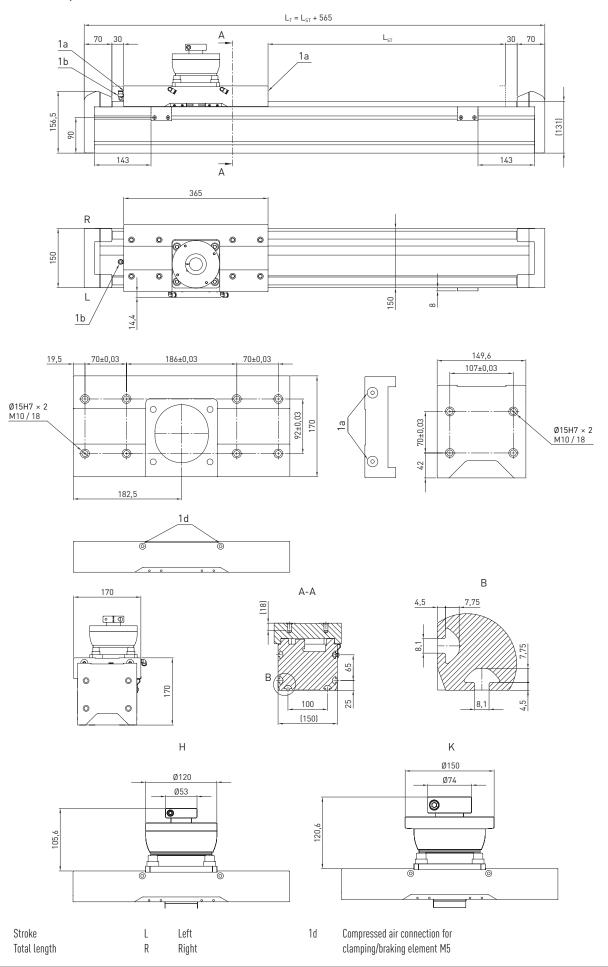
Continuation, order code for cantilever axes HC-R

- N: Without distance measuring system
- A: HIWIN MAGIC, analogue, 1 V_{SS} sin/cos, 5 m open cable end
- D: HIWIN MAGIC, digital, TTL $5\,\mathrm{V}$, $5\,\mathrm{m}$ open cable end

¹⁾ HCO25B: A: 2 × normally closed, 200 mm cable, connector, C: 2 × normally closed, 2 m open cable end; B and D: not available.

²⁾ More detailed information in chapter <u>21 from page 156</u> or in the "HIWIN MAGIC Distance Measuring Systems" assembly instructions".

³⁾ If no drive interface is selected, the order code ends after this digit.


⁴⁾ You can find all flange types in <u>Table 22.1 from page 160</u>. If no gearbox is selected, the order code ends after this digit.

⁵⁾ You can find the right gearbox for the HIWIN axes in section 22.1.5.5 from page 170.

⁶⁾ Additional reference switches on request.

Cantilever axes HC-R

14.3 Dimensions and specifications of HC150R

 L_{ST} L_{T}

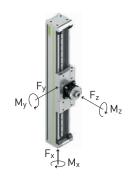


Table 14.1 Load data			
	Permissible load data Theoretical load data		
Lifetime refer- ence value	15,000 km	100 km	
F _{ydynmax} 1) [N]	9,485	95,244	
F _{zdynmax} 1) [N]	10,596	95,244	
M _{xdynmax} [Nm]	446	5,524	
M _{ydynmax} [Nm]	1,359	12,215	
M _{zdynmax} [Nm]	1,216	12,215	

¹⁾ Force must only act free of torque

Table 14.2 General technical data	
Repeatability [mm]	± 0.05
Max. feed force $F_{x_{max}}[N]$	4,300
Max. speed [m/s]	3
Max. acceleration [m/s ²]	50
Max. drive torque M _{A_max} [Nm]	104.9
Typical load capacity [kg]	80
Maximum vertical stroke length 1) [mm]	2,000
Maximum horizontal stroke length 1) [mm]	1,400
Area moment of inertia of profile cross section I_x [mm ⁴]	7,556,719

Area moment of inertia of profile cross section I_y [mm⁴] | 13,470,080

Table 14.3 Guide	
Type of carriage	QHH20CA×4
Static load rating C ₀ [N]	33,860 × 4
Dynamic load rating C _{dyn 50 km} [N]	30,000 × 4

Table 14.4 Rack and pinion					
Toothing Modul 2, diagonally toothed					
Feed constant [mm/U]	153.34				
Effective diameter of pinion [mm]	48.81				
Number of teeth pinion	23				

Table 14.5 Clamping/Braking element					
Holding force [N] 650 / Element					
Operating pressure [bar]	5.5-6.5				

Fig. 14.1 Max. Acceleration a_{max} as a function of the external payload m_{ext}

Mechanical properties	
Mass at 0-stroke [kg]	18.55
Mass per 1 m stroke [kg/100 mm]	2.30
Mass of cantilever at 0-stroke [kg]	13.46
Mass of cantilever per 1 m stroke [kg/100 mm]	2.30
Breakaway force O-stroke axis [N]	20.00

¹⁾ Rotational moment of inertia

¹⁾ Longer axes on request

Double axes HD

15. Double axes HD

15.1 Properties of double axes HD with toothed belt drive

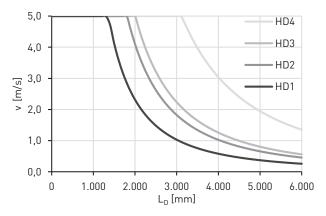
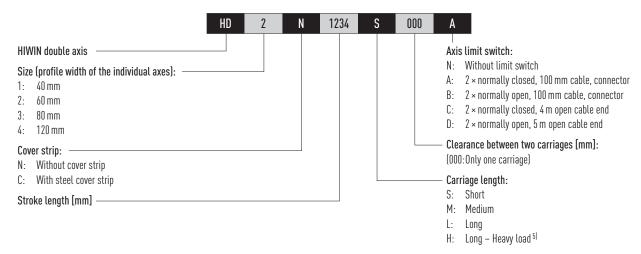
The HIWIN double axes HD are linear modules for flexible use and consist of two toothed belt axes HM-B, which are connected to each other via a synchronous shaft. They are preferably used in applications where a single axis is not sufficient due to high torque loads or the dimensions of the loads to be transported. HIWIN double axes HD are also ideally suited as a basis for multi-axis systems.

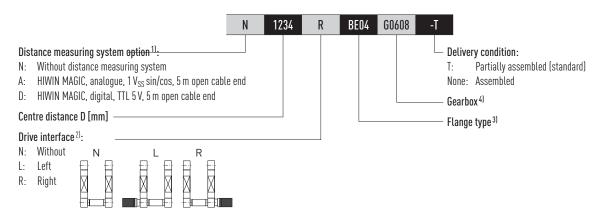
Synchronous shaft

The synchronous shaft ensures safe and rigid power transmission for parallel movement of both axes. Due to the generously dimensioned diameter, the synchronous shaft is very torsionally stiff, meaning no additional bearing is required, even at higher speeds and longer axis distances.

Critical speed of the synchronous shaft

The critical speed depends on the length and diameter of the synchronous shaft and must not be exceeded during operation. The resulting maximum centre distance depending on the size and the axis speed of the HIWIN double axes can be calculated using the diagram in Fig. 15.1.

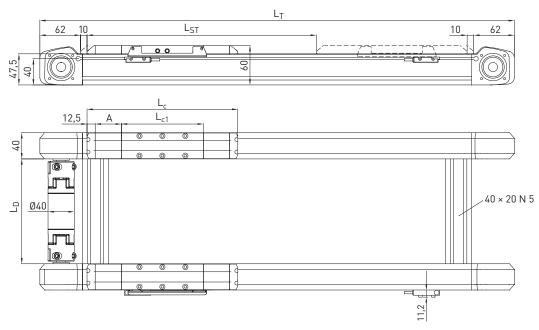

Fig. 15.1 Maximum centre distance L_D as a function of axis speed v

15.2 Order code for double axes HD

Continuation, order code for double axes HD

¹⁾ More detailed information in chapter 21 from page 156 or in the "HIWIN MAGIC Distance Measuring Systems" assembly instructions".

²⁾ If no drive interface is selected, the order code ends after this digit.


^{3]} You can find all flange types in <u>Table 22.1 from page 160</u>. If no gearbox is selected, the order code ends after this digit.

⁴⁾ You can finding matching gearboxes in section <u>22.1.5.5 from page 170</u>.

⁵⁾ Only available for HD4

Double axes HD

15.3 Dimensions and specifications of HD1

Table 15.1 HD1 dimensions							
	Variant without cover Va			Variant with cover			
Sledge type	S	М	L	S	М	L	
Carriage profile length Lc [mm]	125	160	230	125	160	230	
Total carriage length L_c [mm]	150	185	255	230	265	335	
Cover strip deflection A [mm]	_	_	_	40	40	40	
Max. stroke length L _{ST} [mm]	3,000	3,000	3,000	3,000	3,000	3,000	
Total length L _T [mm]	$L_T = L_{ST} + 294$	$L_T = L_{ST} + 329$	$L_T = L_{ST} + 399$	$L_{T} = L_{ST} + 374$	$L_T = L_{ST} + 409$	$L_T = L_{ST} + 479$	
Centre distance L _D min. [mm]	160	160	160	160	160	160	
Centre distance L _D max. [mm]	6,000	6,000	6,000	6,000	6,000	6,000	

Table 15.2 General technical data	
Max. feed force $F_{x_{max}}[N]$	450
Max. speed [m/s]	5
Max. drive torque M _{A_max} [Nm]	7.9
Typical load capacity 1) [kg]	25
Single axis	HM040B

^{1]} With equal load distribution on both axes

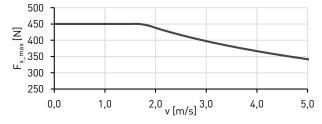
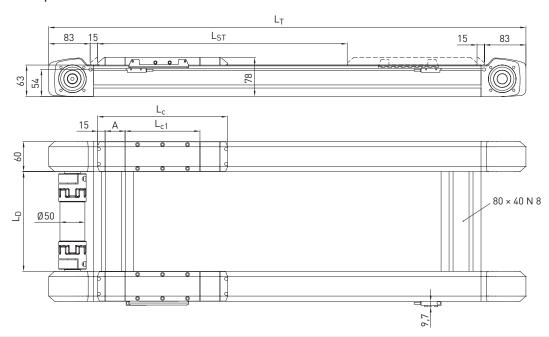


Fig. 15.2 Max. feed force $F_{x_{max}}$ as a function of axis speed v

Table 15.3 Mechanical properties								
	Variant without cover			Variant wit	Variant with cover			
Sledge type	S M L S			S	М	L		
Mass of the carriage [kg]	0.70	0.82	1.04	0.84	0.95	1.17		
Mass at 0-stroke and centre distance $L_D = 0^{(2)}$ [kg]	3.44	3.77	4.43	4.17	4.50	5.17		
Mass per 1 m stroke [kg/m]	6.20	6.20			6.32			
Mass per 1 m centre distance L _D [kg/m]	2.76	2.76			2.76			
$J_{rot.}^{1}$ at 0-stroke and centre distance $L_D = 0$ [kgcm ²]	1.16	1.16			1.16			
J _{rot.} ¹⁾ per 1 m stroke centre distance [kgcm²/m]	3.24			3.24	3.24			
Idle torque at 0-stroke [Nm]	0.35			0.50				


^{1]} Rotational moment of inertia

Note: For further dimensions and data, see toothed belt axis HM040B on Page 26.

²⁾ The values apply to axes with one carriage. For axes with 2 carriages, add the following: Mass of carriage + mass per 1 m stroke x (clearance between the carriages (in m) + carriage length L_C (in m))

15.4 Dimensions and specifications of HD2

Table 15.4 HD2 dimensions								
	Variant without cover Va			Variant with cover				
Sledge type	S	М	L	S	М	L		
Carriage profile length L_c [mm]	150	200	300	150	200	300		
Total carriage length L_c [mm]	180	230	330	260	310	410		
Cover strip deflection A [mm]	_	_	-	40	40	40		
Max. stroke length L _{ST} [mm]	5,704	5,654	5,554	5,624	5,574	5,474		
Total length L _T [mm]	$L_T = L_{ST} + 376$	$L_T = L_{ST} + 426$	$L_T = L_{ST} + 526$	$L_{T} = L_{ST} + 456$	$L_T = L_{ST} + 506$	$L_T = L_{ST} + 606$		
Centre distance L _D min. [mm]	190	190	190	190	190	190		
Centre distance L _D max. [mm]	6,000	6,000	6,000	6,000	6,000	6,000		

Table 15.5 General technical data	
Max. feed force $F_{x_{max}}[N]$	1,323
Max. speed [m/s]	5
Max. drive torque M _{a_max} [Nm]	33.1
Typical load capacity 1) [kg]	62.5
Single axis	HM060B

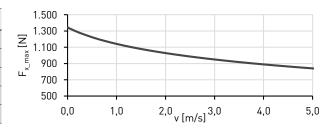
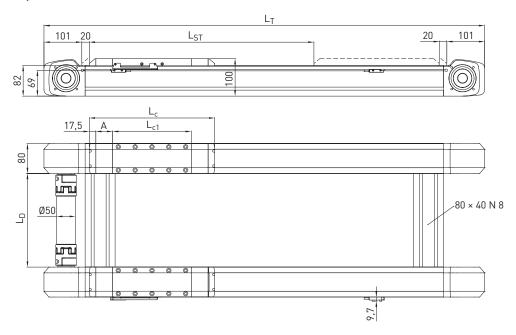


Fig. 15.3 Max. feed force $F_{x_{max}}$ as a function of axis speed v

Table 15.6 Mechanical properties								
	Variant without cover			Variant with	Variant with cover			
Sledge type	S M L			S	М	L		
Mass of the carriage [kg]	1,57	1,86	2,44	1,77	2,06	2,64		
Mass at 0-stroke and centre distance $L_D = 0^{(2)}$ [kg]	8,17	9,00	10,68	9,35	10,19	11,89		
Mass per 1 m stroke [kg/m]	10.96			11.17	11.17			
Mass per 1 m centre distance L _D [kg/m]	10.26	10.26			10.26			
$J_{rot.}^{-1}$ at 0-stroke and centre distance $L_D = 0$ [kgcm ²]	5.95	5.95 5.95			5.95			
J _{rot.} ¹⁾ Per 1 m stroke centre distance [kgcm²/m]	6.63			6.63	6.63			
Idle torque at O-stroke [Nm]	0.94			1.60				


¹⁾ Rotational moment of inertia

Note: For further dimensions and data, see toothed belt axis HM060B on Page 28.

²⁾ The values apply to axes with one carriage. For axes with 2 carriages, add the following: Mass of carriage + mass per 1 m stroke x (clearance between the carriages (in m) + carriage length L_C (in m))

Double axes HD

15.5 Dimensions and specifications of HD3

Table 15.7 HD3 dimensions								
	Variant without cove	Variant without cover V			Variant with cover			
Sledge type	S	М	L	S	М	L		
Carriage profile length L_c [mm]	210	300	390	210	300	390		
Total carriage length L_c [mm]	245	335	425	335	425	515		
Cover strip deflection A [mm]	_	_	_	45	45	45		
Max. stroke length L _{ST} [mm]	5,633	5,543	5,453	5,543	5,453	5,363		
Total length L _T [mm]	$L_T = L_{ST} + 487$	$L_{T} = L_{ST} + 577$	$L_T = L_{ST} + 667$	$L_{T} = L_{ST} + 577$	$L_T = L_{ST} + 667$	$L_T = L_{ST} + 757$		
Centre distance L _D min. [mm]	200	200	200	200	200	200		
Centre distance L _D max. [mm]	6,000	6,000	6,000	6,000	6,000	6,000		

Table 15.8 General technical data	
Max. feed force $F_{x_{max}}[N]$	1,880
Max. speed [m/s]	5
Max. drive torque M _{a_max} [Nm]	56.8
Typical load capacity [kg] ¹⁾	150
Single axis	HM080B

¹⁾ With equal load distribution on both axes

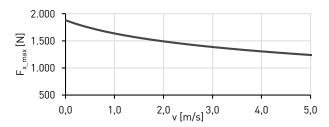
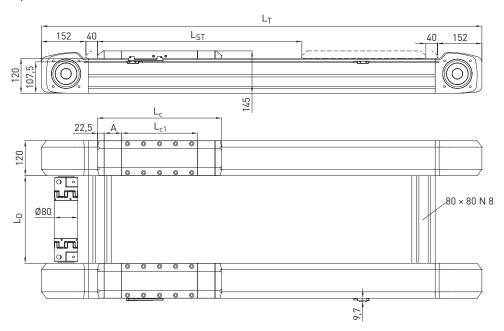


Fig. 15.4 Max. feed force $F_{x_{max}}$ as a function of axis speed v

Table 15.9 Mechanical properties								
	Variant without cover			Variant with cover				
Sledge type	S M L			S	М	L		
Mass of the carriage [kg]	3.22	4.03	4.85	3.62	4.44	5.25		
Mass at 0-stroke and centre distance $L_D = 0^{2}$ [kg]	16.28	18.88	21.49	18.79	21.42	24.05		
Mass per 1 m stroke [kg/m]	19.88			20.15	20.15			
Mass per 1 m centre distance L _D [kg/m]	10.26			10.26				
$J_{rot.}^{-1}$ at 0-stroke and centre distance $L_D = 0$ [kgcm ²]	13.37	13.37			13.37			
J _{rot.} ¹⁾ Per 1 m stroke centre distance [kgcm²/m]	6.63			6.63				
Idle torque at O-stroke [Nm]	2.40	2.40 2.60						


¹⁾ Rotational moment of inertia

Note: For further dimensions and data, see toothed belt axis HM080B on Page 30.

^{2]} The values apply to axes with one carriage. For axes with 2 carriages. add the following: Mass of carriage + mass per 1 m stroke x (clearance between the carriages (in m) + carriage length L_C (in m))

15.6 Dimensions and specifications of HD4

Table 15.10 HD4 dimensions							
	Variant without cove	Variant without cover			Variant with cover		
Sledge type	S	М	L/H	S	М	L/H	
Carriage profile length L_c [mm]	260	370	535	260	370	535	
Total carriage length L_c [mm]	305	415	580	425	535	700	
Cover strip deflection A [mm]	_	_	_	60	60	60	
Max. stroke length L _{ST} [mm]	5,531	5,421	5,256	5,411	5,301	5,136	
Total length L _T [mm]	$L_T = L_{ST} + 689$	$L_T = L_{ST} + 799$	$L_T = L_{ST} + 964$	$L_{T} = L_{ST} + 809$	$L_T = L_{ST} + 919$	$L_T = L_{ST} + 1,084$	
Centre distance L _D min. [mm]	260	260	260	260	260	260	
Centre distance L _D max. [mm]	6,000	6,000	6,000	6,000	6,000	6,000	

Table 15.11 General technical data				
Sledge type	S/M/L	Н		
Max. feed force F _{x_max} [N]	4,385	6,000		
Max. speed [m/s]	5	5		
Max. drive torque Ma_max [Nm]	201	275		
Typical load capacity [kg] ¹⁾	300	400		
Single axis	HM120B	HM120B		

¹⁾ With equal load distribution on both axes

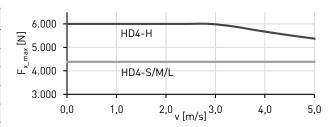
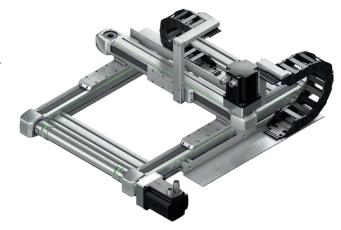


Fig. 15.5 Max. feed force $\mathbf{F}_{\mathbf{x_{-max}}}$ as a function of axis speed \mathbf{v}

Table 15.12 Mechanical properties								
	Variant without cover			Variant wi	Variant with cover			
Sledge type	S	М	L	Н	S	М	L/H	Н
Mass of the carriage [kg]	10.27	12.52	15.89	17.44	11.21	13.46	16.84	18.39
Mass at 0-stroke and centre distance $L_D = 0^{2)}$ [kg]	47.46	54.34	64.65	66.21	53.93	60.85	71.22	72.77
Mass per 1 m stroke [kg/m]	42.06				42.41			
Mass per 1 m centre distance L _D [kg/m]	17.69				17.69			
$J_{rot.}^{1}$ at 0-stroke and centre distance $L_0 = 0$ [kgcm ²]	103.05				99.05			
J _{rot.} ¹⁾ Per 1 m stroke centre distance [kgcm²/m]	44.93				44.93			
Idle torque at O-stroke [Nm]	6.20				7.00			

^{1]} Rotational moment of inertia

Note: For further dimensions and data, see toothed belt axis HM120B on Page 32.


The values apply to axes with one carriage. For axes with 2 carriages, add the following: Mass of carriage + mass per 1 m stroke x (clearance between the carriages (in m) + carriage length $L_{\mathbb{C}}$ (in m))

Two-axis systems HS2

16. Two-axis systems HS2

16.1 Properties of the double axis systems HS2

HIWIN two-axis systems HS2 are flexible units for positioning along the X- and Y-axes. They consist of a HIWIN double axis HD in the X direction and a HIWIN toothed belt axis HM-B or HT-B in the Y direction. HIWIN two-axis systems HS2 are especially suitable for two-dimensional or flat movements in one plane and form the basis for three-axis systems.

Energy chain

Generously dimensioned energy chains provide space for safely carrying the supply lines. The energy chains are integrated into the complete system in a particularly compact and space-saving way.

Maximum axis speed in X direction

The maximum axis speed in the X direction depends on the size and the centre distance, which in the two-axis system HS2 results from the selected stroke in the Y direction. The dependence of the maximum axis speed on stroke length Y can be determined from the diagram in Fig. 16.1.

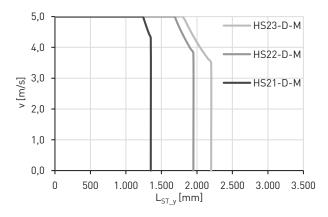


Fig. 16.1 Max. axis speed v in X direction, as a function of stroke L_{ST} in Y direction

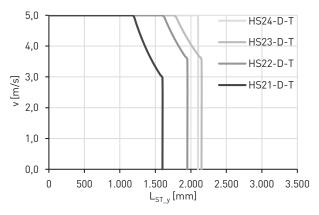
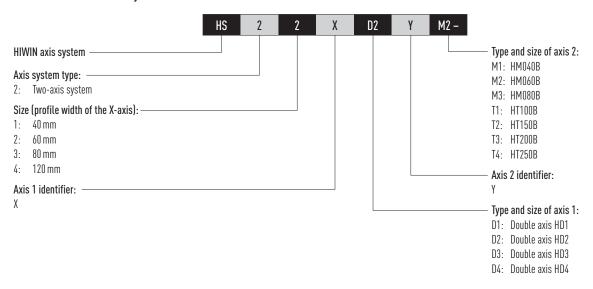
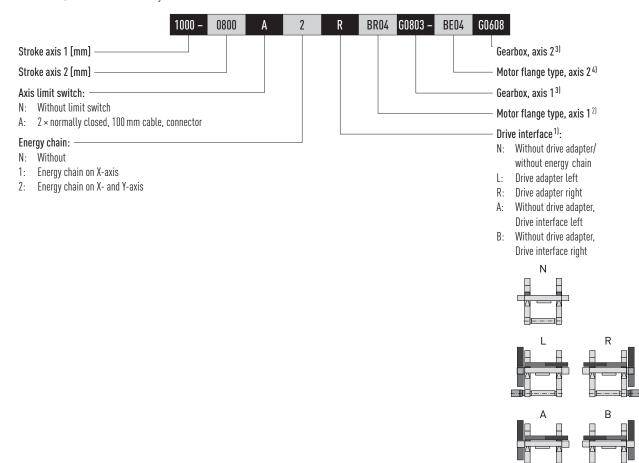



Fig. 16.2 Max. axis speed v in X direction, as a function of stroke L_{ST} in Y direction

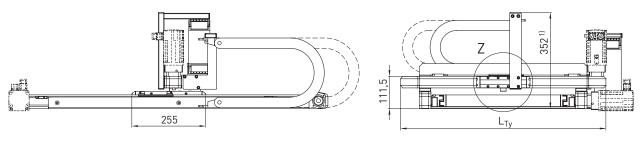


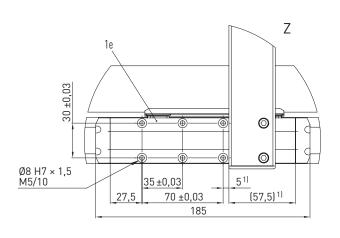
111

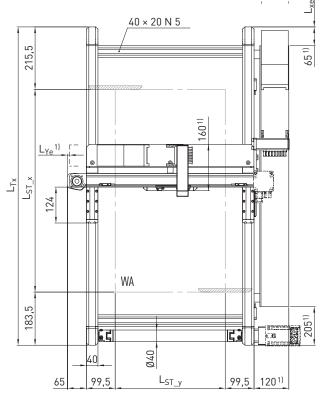
16.2 Order code for two-axis systems HS2

Continuation, order code for two-axis systems HS2

¹ If no drive interface is selected, the order code ends after this digit.


²⁾ You can find all flange types in Table 22.1 from page 160. If no flange type is selected, the "Gearbox, axis 1" position is omitted.


³⁾ You can finding matching gearboxes in section <u>22.1.5.5 from page 170</u>.


⁴⁾ All flange types for linear modules HM-B can be found in <u>Table 22.1 from page 160</u>, for linear tables HT-B in <u>Table 22.2 from page 161</u> If no flange type is selected, the order code ends after this digit.

Two-axis systems HS2

16.3 Dimensions and specifications of HS21-D-M

Table 16.1 HS21-D-M dimensions	
Total length X-axis L _{Tx} [mm]	$L_{Tx} = L_{ST_x} + 399$
Total length Y-axis L _{Ty} [mm]	$L_{Ty} = L_{ST_y} + 329$

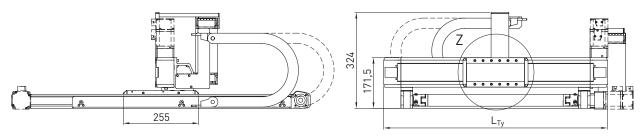
Table 16.2 Energy chain				
	X-axis	Y-axis		
Inner cross section W × H [mm]	77 × 25	57 × 25		
Bending radius [mm]	100	75		
End position at electrical zero F [mm]	L _{Xe} = 195	$L_{Ye} = 4.5$		
End position at mechanical zero [mm]	L _{Xm} = 200	L _{Ye} = 9.5		

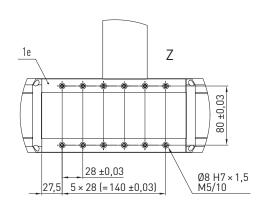
¹⁾ Omitted for variant without energy chain

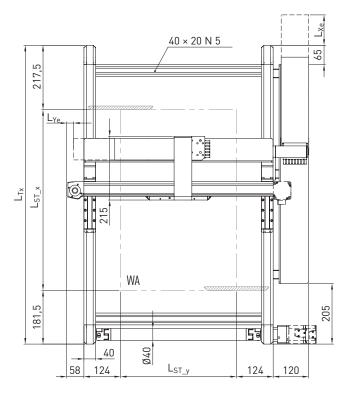
Table 16.3 General technical data			
	X-axis	Y-axis	
Axis type	HD1N	HM040B-N	
Sledge type	L	M	
Max. feed force $F_{x_{max}}[N]$	450	300	
Max. speed [m/s]	5		
Max. acceleration [m/s²]	30		
Max. drive torque M _{A_max} [Nm]	7.9	5.3	
Max. stroke ¹⁾²⁾ [mm]	3,000	1,350	
Typical load capacity [kg]	5		

1) Restrictions due to energy chain may apply. Longer strokes available on request.
2) Depends on selected payload and dynamic response. For comprehensive application advice, please contact HIWIN.

Note: Dimensions and specifications of double axis HD1 can be found in section 15.3 on page 106


Dimensions and specifications of single axis HM040B can be found in section $\underline{5.3}$ on page $\underline{26}$


Table 16.4 Drive					
X-axis Y-axis					
Toothed belt drive element	B15HTD3				
Feed constant [mm/U]	111				
Toothed belt effective diameter [mm]	35.33				


Table 16.5 Mechanical properties				
Moving mass Y-axis [kg]	0.43			
Moving mass X-axis at 0-stroke Y-axis [kg]	3.26			
Moving mass X-axis per 1 m stroke Y-axis [kg/m]	3.10			
Mass of total system at O-stroke X- and Y-axis [kg]	6.92			
Mass of total system per 1 m stroke X-axis [kg/m]	6.20			
Mass of total system per 1 m stroke Y-axis [kg/m]	5.86			
Note: All values without energy chain and without drive				

Two-axis systems HS2

16.4 Dimensions and specifications of HS21-D-T

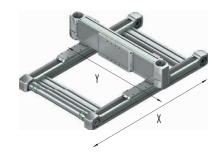


Table 16.6 HS21-D-T dimensions	
Total length X-axis L _{Tx} [mm]	$L_{Tx} = L_{ST_x} + 399$
Total length Y-axis L _{Ty} [mm]	$L_{Ty} = L_{ST_y} + 364$

Table 16.7 Energy chain				
	X-axis	Y-axis		
Inner cross section W × H [mm]	77 × 25	57 × 25		
Bending radius [mm]	100	75		
End position at electrical zero F [mm]	L _{Xe} = 195	L _{Ye} = -23.5		
End position at mechanical zero [mm]	L _{Xm} = 200	L _{Ye} = -16.0		

Table 16.8 General technical data			
	X-axis	Y-axis	
Axis type	HD1N	HT100B-C	
Sledge type	L	S	
Max. feed force $F_{x_{max}}[N]$	450	813	
Max. speed [m/s]	5		
Max. acceleration [m/s²]	30		
Max. drive torque M _{A_max} [Nm]	7.9	13.6	
Max. stroke 1121 [mm]	3,000	1,600	
Typical load capacity [kg]	20		

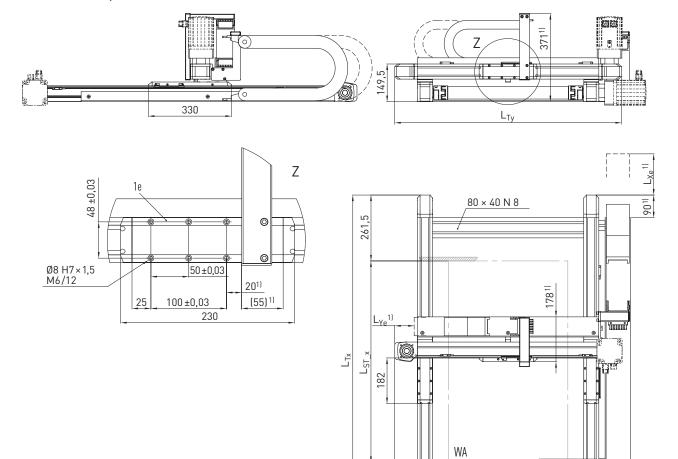

Restrictions due to energy chain may apply. Longer strokes available on request.
 Depends on selected payload and dynamic response. For comprehensive application advice, please contact HIWIN.
 Note: Dimensions and specifications of double axis HD1 can be found in section 15.3 on page 106
 Dimensions and specifications of linear table HT100B can be found in section 7.3 on page 46

Table 16.9 Drive					
X-axis Y-axis					
Toothed belt drive element	B15HTD3	B25HTD5			
Feed constant [mm/U]	111	105			
Toothed belt effective diameter [mm] 35.33 33.42					

Table 16.10 Mechanical properties		
Moving mass Y-axis [kg]	1.59	
Moving mass X-axis at 0-stroke Y-axis [kg]	6.52	
Moving mass X-axis per 1 m stroke Y-axis [kg/m]	6.65	
Mass of total system at O-stroke X- and Y-axis [kg]	10.31	
Mass of total system per 1 m stroke X-axis [kg/m]	6.20	
Mass of total system per 1 m stroke Y-axis [kg/m]	9.41	
Note: All values without energy chain and without drive		

Two-axis systems HS2

16.5 Dimensions and specifications of HS22-D-M

L_{ST} Stroke WA Working space 1e Interface application

Table 16.11 HS22-D-M dimensions	
Total length X-axis L _{Tx} [mm]	$L_{T_X} = L_{ST_X} + 526$
Total length Y-axis L _{Ty} [mm]	$L_{Ty} = L_{ST_y} + 426$

264,5

90 123

Ø50

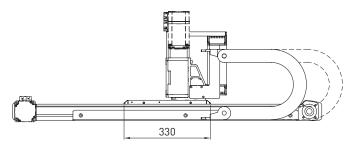

 L_{ST_y}

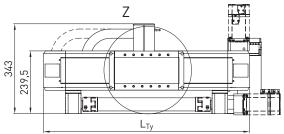
123 129¹⁾

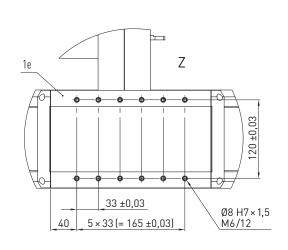
Table 16.12 Energy chain		
X-axis Y-axis		Y-axis
Inner cross section W × H [mm]	75 × 35	57 × 25
Bending radius [mm]	100	75
End position at electrical zero F [mm]	L _{Xe} = 200	L _{Ye} = -45.5
End position at mechanical zero [mm]	L _{Xm} = 210	$L_{Ye} = -38.0$

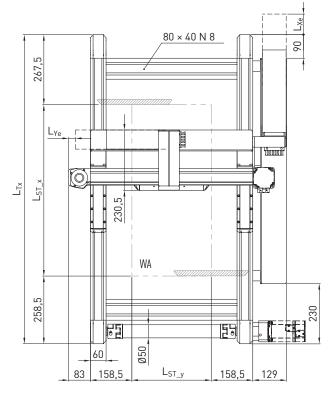
¹⁾ Omitted for variant without energy chain

Table 16.13 General technical data		
	X-axis	Y-axis
Axis type	HD2N	HM060B-N
Sledge type	L	M
Max. feed force $F_{x_{max}}[N]$	1,323	882
Max. speed [m/s]	5	
Max. acceleration [m/s²]	30	
Max. drive torque M _{A_max} [Nm]	33.1	22.1
Max. stroke 1/2) [mm]	5.554	1,950
Typical load capacity [kg]	12	


Restrictions due to energy chain may apply. Longer strokes available on request.
 Depends on selected payload and dynamic response. For comprehensive application advice, please contact HIWIN.
 Note: Dimensions and specifications of double axis HD2 can be found in section 15.4 on page 107
 Dimensions and specifications of single axes HM060B can be found in section 5.4 on page 28


Table 16.14 Drive		
X-axis Y-axis		Y-axis
Toothed belt drive element	B25HTD5	
Feed constant [mm/U] 155		
Toothed belt effective diameter [mm]	49.34	


Table 16.15 Mechanical properties		
Moving mass Y-axis [kg]	1.00	
Moving mass X-axis at 0-stroke Y-axis [kg]	7.47	
Moving mass X-axis per 1 m stroke Y-axis [kg/m]	5.48	
Mass of total system at O-stroke X- and Y-axis [kg]	16.84	
Mass of total system per 1 m stroke X-axis [kg/m]	10.96	
Mass of total system per 1 m stroke Y-axis [kg/m]	15.74	
Note: All values without energy chain and without drive		


Two-axis systems HS2

16.6 Dimensions and specifications of HS22-D-T

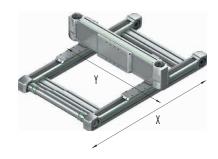
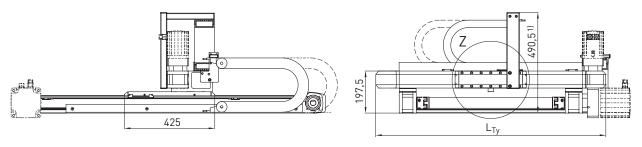
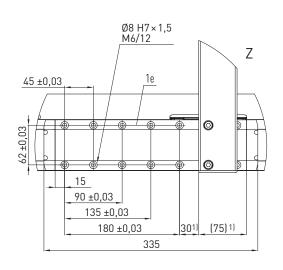


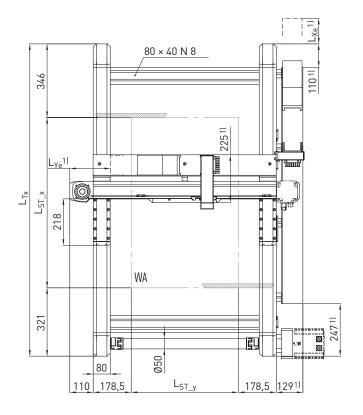
Table 16.16 HS22-D-T dimensions	
Total length X-axis L _{Tx} [mm]	$L_{Tx} = L_{ST_x} + 526$
Total length Y-axis L _{Ty} [mm]	$L_{Ty} = L_{ST_y} + 483$

Table 16.17 Energy chain		
X-axis Y-axis		Y-axis
Inner cross section W × H [mm]	75 × 35	57 × 25
Bending radius [mm]	100	75
End position at electrical zero F [mm]	L _{Xe} = 200	L _{Ye} = -46.5
End position at mechanical zero [mm]	L _{Xm} = 210	L _{Ye} = -36.5

Table 16.18 General technical data		
	X-axis	Y-axis
Axis type	HD2N	HT150B-C
Sledge type	L	S
Max. feed force $F_{x_{max}}[N]$	1,323	1,300
Max. speed [m/s]	5	
Max. acceleration [m/s²]	30	
Max. drive torque M _{A_max} [Nm]	33.1	32.1
Max. stroke 1121 [mm]	5,554	1,950
Typical load capacity [kg]	40	


Restrictions due to energy chain may apply. Longer strokes available on request.
 Depends on selected payload and dynamic response. For comprehensive application advice, please contact HIWIN.
 Note: Dimensions and specifications of double axis HD2 can be found in section 15.4 on page 107
 Dimensions and specifications of linear table HT150B can be found in section 7.4 on page 48


Table 16.19 Drive		
	X-axis	Y-axis
Toothed belt drive element	B25HTD5	B40HTD5
Feed constant [mm/U]	155	
Toothed belt effective diameter [mm]	49.34	


Table 16.20 Mechanical properties		
Moving mass Y-axis [kg]	3.08	
Moving mass X-axis at 0-stroke Y-axis [kg]	14.41	
Moving mass X-axis per 1 m stroke Y-axis [kg/m]	11.13	
Mass of total system at 0-stroke X- and Y-axis [kg]	24.51	
Mass of total system per 1 m stroke X-axis [kg/m]	10.96	
Mass of total system per 1 m stroke Y-axis [kg/m]	21.39	
Note: All values without energy chain and without drive		

Two-axis systems HS2

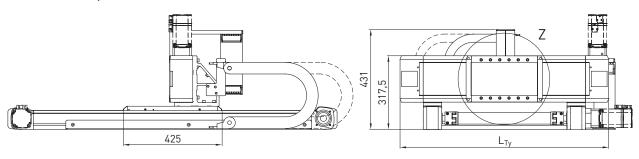
16.7 Dimensions and specifications of HS23-D-M

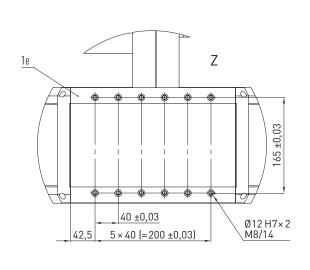
Table 16.21 HS23-D-M dimensions	
Total length X-axis L _{Tx} [mm]	$L_{Tx} = L_{ST_x} + 667$
Total length Y-axis L _{Ty} [mm]	$L_{\overline{1}y} = L_{S\overline{1}_y} + 577$

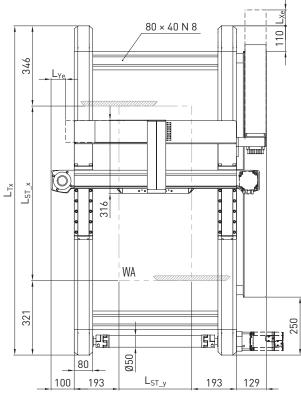
Table 16.22 Energy chain				
X-axis Y-axis				
Inner cross section W × H [mm]	75 × 35	77 × 25		
Bending radius [mm] 100 100				
End position at electrical zero F [mm]	L _{Xe} = 160	L _{Ye} = -158.7		
End position at mechanical zero [mm]	L _{Xm} = 170	L _{Ye} = -148.7		

¹⁾ Omitted for variant without energy chain

Table 16.23 General technical data				
	X-axis	Y-axis		
Axis type	HD3N	HM080B-N		
Sledge type	L	M		
Max. feed force F _{x_max} [N]	1,880	1,253		
Max. speed [m/s]	5	5		
Max. acceleration [m/s²]	30	30		
Max. drive torque M _{A_max} [Nm]	56.8	37.9		
Max. stroke 1) 2) [mm]	5,453	2,200		
Typical load capacity [kg]	30			


11 Restrictions due to energy chain may apply. Longer strokes available on request.
21 Depends on selected payload and dynamic response. For comprehensive application advice, please contact HIWIN.
Note: Dimensions and specifications of double axis HD3 can be found in section 15.5 on page 108 Dimensions and specifications of single axis HM080B can be found in section $\underline{5.5}$ on page $\underline{30}$


Table 16.24 Drive				
X-axis Y-axis				
Toothed belt drive element B35HTD5				
Feed constant [mm/U] 190				
Toothed belt effective diameter [mm] 60.48				


Table 16.25 Mechanical properties		
Moving mass Y-axis [kg]	2.14	
Moving mass X-axis at 0-stroke Y-axis [kg]	16.98	
Moving mass X-axis per 1 m stroke Y-axis [kg/m]	9.94	
Mass of total system at O-stroke X- and Y-axis [kg]	35.37	
Mass of total system per 1 m stroke X-axis [kg/m]	19.88	
Mass of total system per 1 m stroke Y-axis [kg/m]	20.20	
Note: All values without energy chain and without drive		

Two-axis systems HS2

16.8 Dimensions and specifications of HS23-D-T

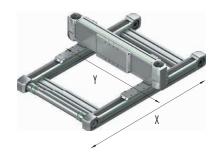


Table 16.26 HS23-D-T dimensions	
Total length X-axis L _{Tx} [mm]	$L_{\overline{1}X} = L_{S\overline{1}_X} + 667$
Total length Y-axis L _{Ty} [mm]	$L_{Ty} = L_{ST_y} + 586$

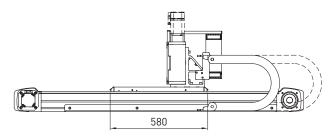
Table 16.27 Energy chain				
X-axis Y-axis				
Inner cross section W × H [mm]	75 × 35	77 × 25		
Bending radius [mm] 100 100				
End position at electrical zero F [mm]	L _{Xe} = 160	$L_{Ye} = -53.0$		
End position at mechanical zero [mm]	L _{Xm} = 170	$L_{Ye} = -38.0$		

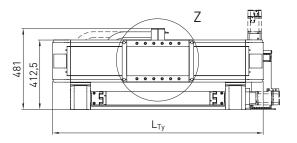
Table 16.28 General technical data			
	X-axis	Y-axis	
Axis type	HD3N	HT200B-C	
Sledge type	L	S	
Max. feed force $F_{x_{max}}[N]$	1,880	3,000	
Max. speed [m/s]	5		
Max. acceleration [m/s²]	30		
Max. drive torque M _{A_max} [Nm]	56.8	87.9	
Max. stroke 1 2 [mm]	5,453	2,150	
Typical load capacity [kg]	al load capacity [kg] 80		

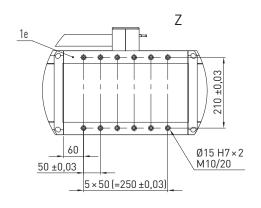
1) Restrictions due to energy chain may apply. Longer strokes available on request.
2) Depends on selected payload and dynamic response. For comprehensive application advice, please contact HIWIN.

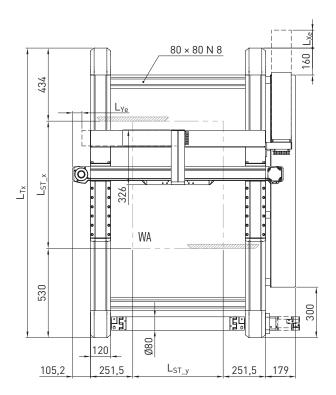
Note: Dimensions and specifications of double axis HD3 can be found in section 15.5 on page 108

Dimensions and specifications of linear table HT200B can be found in section 7.5 on page 50


Table 16.29 Drive				
X-axis Y-axis				
Toothed belt drive element B35HTD5 B50HTD8				
Feed constant [mm/U] 190 184				
Toothed belt effective diameter [mm] 60.48 58.57				


Table 16.30 Mechanical properties		
Moving mass Y-axis [kg]	5.52	
Moving mass X-axis at 0-stroke Y-axis [kg]	29.17	
Moving mass X-axis per 1 m stroke Y-axis [kg/m]	17.75	
Mass of total system at O-stroke X- and Y-axis [kg]	47.86	
Mass of total system per 1 m stroke X-axis [kg/m]	19.88	
Mass of total system per 1 m stroke Y-axis [kg/m]	28.00	


Note: All values without energy chain and without drive


Two-axis systems HS2

16.9 Dimensions and specifications of HS24-D-T

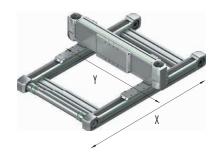


Table 16.31 HS24-D-T dimensions	
Total length X-axis L _{Tx} [mm]	$L_{Tx} = L_{ST_x} + 964$
Total length Y-axis L _{Ty} [mm]	$L_{Ty} = L_{ST_y} + 713$

Table 16.32 Energy chain			
X-axis Y-axis			
Inner cross section W × H [mm]	100 × 35	77 × 25	
Bending radius [mm] 125 100			
End position at electrical zero F [mm] $L_{\chi_e} = 120$ $L_{\gamma_e} = -116.5$			
End position at mechanical zero [mm]	L _{Xm} = 140	L _{Ye} = -96.5	

Table 16.33 General technical data			
	X-axis	Y-axis	
Axis type	HD4N	HT250B-C	
Sledge type	L	S	
Max. feed force $F_{x_{max}}[N]$	4,385	4,500	
Max. speed [m/s]	5		
Max. acceleration [m/s²]	30		
Max. drive torque M _{A_max} [Nm]	201	149	
Max. stroke 1121 [mm]	5,256	2,100	
Typical load capacity [kg]	load capacity [kg] 130		

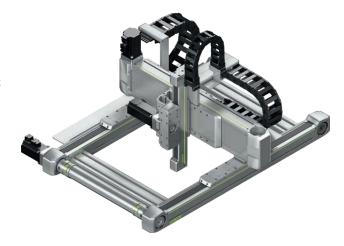
1) Restrictions due to energy chain may apply. Longer strokes available on request.
2) Depends on selected payload and dynamic response. For comprehensive application advice, please contact HIWIN.

Note: Dimensions and specifications of double axis HD4 can be found in section 15.6 on page 109

Dimensions and specifications of linear table HT250B can be found in section 7.6 on page 52

Table 16.34 Drive		
	X-axis	Y-axis
Toothed belt drive element	B60HTD8	B75HTD8
Feed constant [mm/U]	288	208
Toothed belt effective diameter [mm]	91.67	66.21

11.00
10.27
57.57
23.09
109.90
42.06
40.78


Note: All values without energy chain and without drive

Two-axis systems HS3

17. Two-axis systems HS3

17.1 Properties of three-axis systems HS3

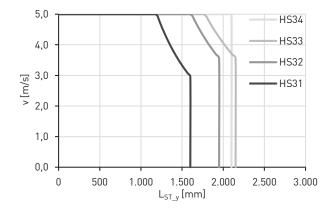
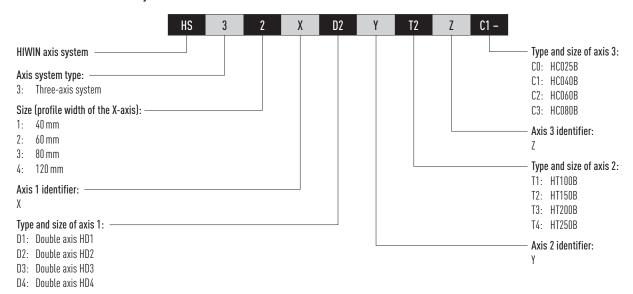
HIWIN three-axis systems HS3 are flexible units for positioning along the X-Y- and Z-axis. They consist of a HIWIN double axis HD in the X direction, a HIWIN toothed belt axis HT-B in the Y direction and a HIWIN cantilever axis HC-B in the Z direction. HIWIN HS32 three-axis systems are particularly suitable for three-dimensional movements.

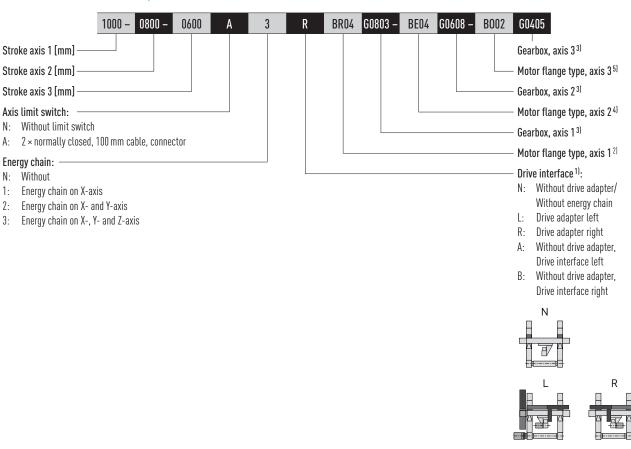
Energy chain

Generously dimensioned energy chains provide space for safely carrying the supply lines. The energy chains are integrated into the complete system in a particularly compact and space-saving way.

Maximum axis speed in X direction

The maximum axis speed in the X direction depends on the size and the centre distance, which in the three-axis system HS3 results from the selected stroke in the Y direction. The dependence of the maximum axis speed on stroke length Y can be determined from the diagram in Fig. 17.1.

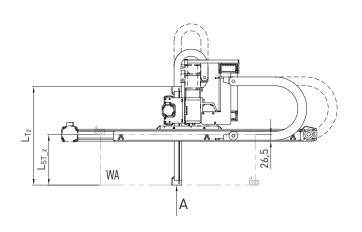

Fig. 17.1 Max. axis speed v in X direction, as a function of stroke L_{ST} in Y direction

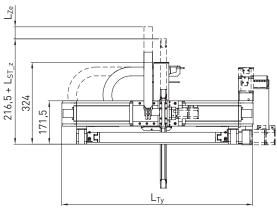
17.2 Order code for three-axis systems HS3

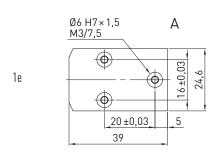
Continuation, order code for three-axis systems HS3

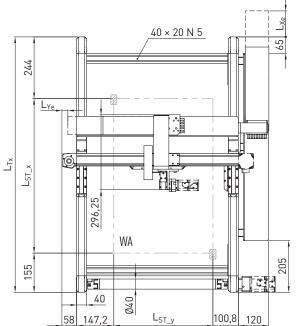
¹ If no drive interface is selected, the order code ends after this digit.

²⁾ You can find all flange types in Table 22.1 from page 160. If no flange type is selected, the "Gearbox, axis 1" position is omitted.


³⁾ You can finding matching gearboxes in section <u>22.1.5.5 from page 170</u>.


⁴⁾ You can find all flange types in <u>Table 22.2 from page 161</u>. If no flange type is selected, the "Gearbox, axis 2" position is omitted.


⁵⁾ You can find all flange types in <u>Table 22.4 from page 163</u>. If no flange type is selected, the order code ends after this digit.


Two-axis systems HS3

17.3 Dimensions and specifications of HS31-D-T-C

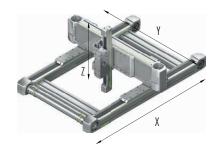


Table 17.1 HS31-D-T-C dimensions	
Total length X-axis L _{Tx} [mm]	$L_{T_X} = L_{ST_X} + 399$
Total length Y-axis L _{Ty} [mm]	$L_{Ty} = L_{ST_y} + 364$
Total length Z-axis L _{Tz} [mm]	$L_{Tz} = L_{ST_z} + 190$

Table 17.2 Energy chain			
	X-axis	Y-axis	Z-axis
Inner cross section W × H [mm]	77 × 25	57 × 25	20 × 21
Bending radius [mm]	100	75	48
End position at electrical zero F [mm]	L _{Xe} = 195	L _{Ye} = -23.5	$L_{Ze} = 151.0 - L_{ST}/2$
End position at mechanical zero [mm]	L _{Xm} = 200	L _{Ye} = -16.0	$L_{Zm} = 147.5 - L_{ST}/2$

Table 17.3 General technical data			
	X-axis	Y-axis	Z-axis
Axis type	HD1N	HT100B-C	HC025B
Sledge type	L	L S	
Max. feed force $F_{x_{max}}[N]$	450	813	241
Max. speed [m/s]	5		
Max. acceleration [m/s²]	30		
Max. drive torque M _{A_max} [Nm]	7.9	13.6	3.1
Max. stroke 1121 [mm]	3,000	1,600	300
Typical load capacity [kg]	2		

1) Restrictions due to energy chain may apply. Longer strokes available on request.
2) Depends on selected payload and dynamic response. For comprehensive application advice, please contact HIWIN.
Note: Dimensions and specifications of double axis HD1 can be found in section 15.3 on page 106

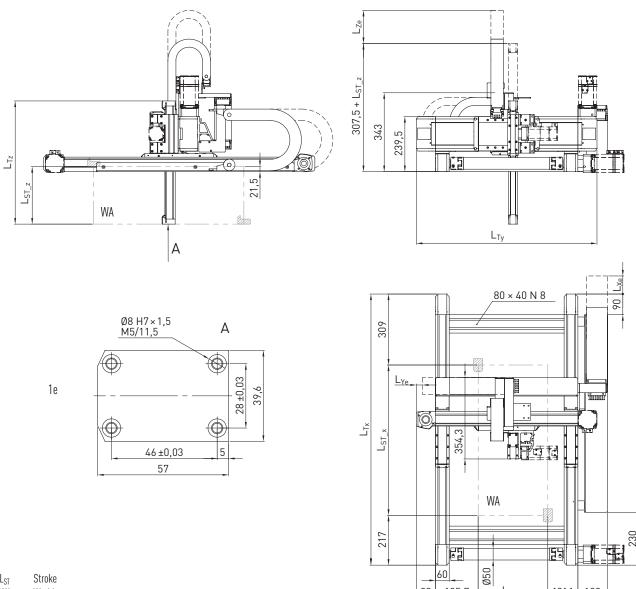

Dimensions and specifications of single axis HT100B can be found in section $\underline{7.3}$ on page $\underline{46}$ Dimensions and specifications of single axis HC025B can be found in section $\underline{13.3}$ on page $\underline{88}$

Table 17.4 Drive			
	X-axis	Y-axis	Z-axis
Toothed belt drive element	B15HTD3	B25HTD5	B12HTD3
Feed constant [mm/U]	111	105	81
Toothed belt effective diameter [mm]	35.33	33.42	25.78

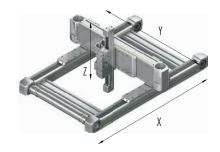
Table 17.5 Mechanical properties	
Moving mass Z-axis at 0-stroke [kg]	0.30
Moving mass Z-axis per 1 m stroke [kg/m]	1.27
Moving mass Y-axis at O-stroke Z-axis [kg]	2.61
Moving mass X-axis at O-stroke Y- and Z-axis [kg]	7.53
Moving mass X-axis per 1 m stroke Y-axis [kg/m]	6.65
Mass of total system at O-stroke X-, Y- and Z-axis [kg]	11.33
Mass of total system per 1 m stroke X-axis [kg/m]	6.20
Mass of total system per 1 m stroke Y-axis [kg/m]	9.41
Mass of total system per 1 m stroke Z-axis [kg/m]	1.27
Note: All values without energy chain and without drive	

Two-axis systems HS3

17.4 Dimensions and specifications of HS32-D-T-C

L_{ST} Stroke WA Working space 1e Interface application

Table 17.6 HS32-D-T-C dimensions	
Total length X-axis L _{Tx} [mm]	$L_{Tx} = L_{ST_x} + 526$
Total length Y-axis L _{Ty} [mm]	$L_{Ty} = L_{ST_y} + 483$
Total length Z-axis L _{Tz} [mm]	$L_{Tz} = L_{ST_z} + 286$


83

185,7

131,1 129

Table 17.7 Energy chain			
	X-axis	Y-axis	Z-axis
Inner cross section W × H [mm]	75 × 35	57 × 25	38 × 25
Bending radius [mm]	100	75	75
End position at electrical zero F [mm]	L _{Xe} = 200	Lye = -46.5	$L_{Ze} = 274.0 - L_{ST}/2$
End position at mechanical zero [mm]	L _{Xm} = 210	L _{Ye} = -36.5	$L_{Zm} = 269.0 - L_{ST}/2$

Table 17.8 General technical data				
	X-axis	Y-axis	Z-axis	
Axis type	HD2N	HT150B-C	HC040B	
Sledge type	L	L		
Max. feed force F _{x_max} [N]	1,343	1,300	404	
Max. speed [m/s]	5	5		
Max. acceleration [m/s²]	30	30		
Max. drive torque M _{A_max} [Nm]	33.1	32.1	7.9	
Max. stroke 1 2 [mm]	5,554	1,950	500	
Typical load capacity [kg]	8			

1) Restrictions due to energy chain may apply. Longer strokes available on request.
2) Depends on selected payload and dynamic response. For comprehensive application advice, please contact HIWIN.
Note: Dimensions and specifications of double axis HD2 can be found in section 15.4 on page 107

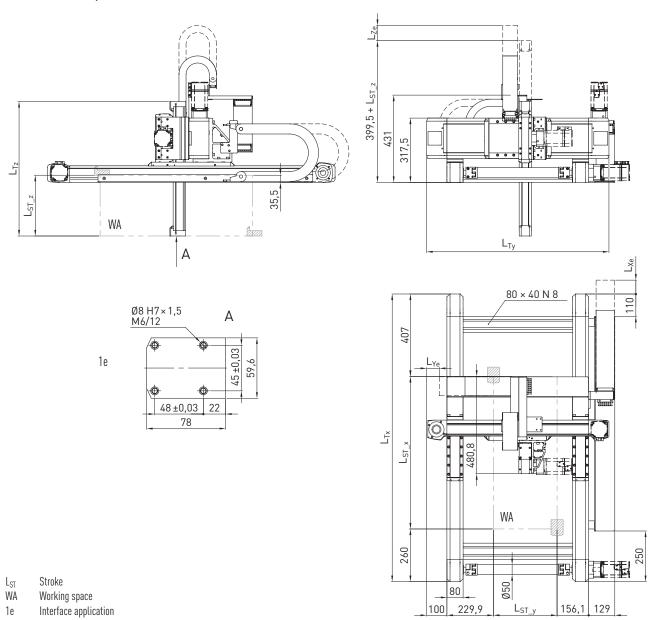

Dimensions and specifications of single axis HT150B can be found in section $\overline{1.4}$ on page $\overline{48}$ Dimensions and specifications of single axes HC040B can be found in section $\overline{13.4}$ on page $\overline{90}$

Table 17.9 Drive			
	X-axis	Y-axis	Z-axis
Toothed belt drive element	B25HTD5	B40HTD5	B20HDT3
Feed constant [mm/U]	155		123
Toothed belt effective diameter [mm]	49.34		39.15

Table 17.10 Mechanical properties	
Moving mass Z-axis at O-stroke [kg]	0.91
Moving mass Z-axis per 1 m stroke [kg/m]	2.75
Moving mass Y-axis at O-stroke Z-axis [kg]	6.74
Moving mass X-axis at O-stroke Y- and Z-axis [kg]	18.07
Moving mass X-axis per 1 m stroke Y-axis [kg/m]	11.13
Mass of total system at O-stroke X-, Y- and Z-axis [kg]	28.18
Mass of total system per 1 m stroke X-axis [kg/m]	10.96
Mass of total system per 1 m stroke Y-axis [kg/m]	21.39
Mass of total system per 1 m stroke Z-axis [kg/m]	2.75
Note: All values without energy chain and without drive	

Two-axis systems HS3

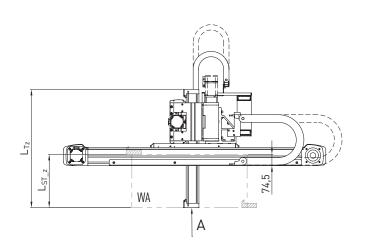
17.5 Dimensions and specifications of HS33-D-T-C

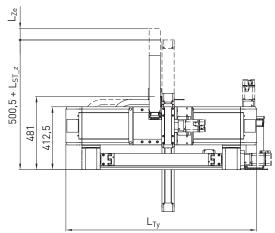
Table 17.11 HS33-D-T-C dimensions	
Total length X-axis L _{Tx} [mm]	$L_{Tx} = L_{ST_x} + 667$
Total length Y-axis L _{Ty} [mm]	$L_{Ty} = L_{ST_y} + 586$
Total length Z-axis L _{Tz} [mm]	$L_{Tz} = L_{ST_z} + 364$

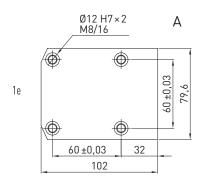
Table 17.12 Energy chain			
	X-axis	Y-axis	Z-axis
Inner cross section W × H [mm]	75 × 35	77 × 25	57 × 25
Bending radius [mm]	100	100	75
End position at electrical zero F [mm]	L _{Xe} = 160	L _{Ye} = -53.0	$L_{Ze} = 282.5 - L_{ST}/2$
End position at mechanical zero [mm]	L _{Xm} = 170	L _{Ye} = -38.0	$L_{Zm} = 275.0 - L_{ST}/2$

Table 17.13 General technical data				
	X-axis	Y-axis	Z-axis	
Axis type	HD3N	HT200B-C	HC060B	
Sledge type	L	L		
Max. feed force $F_{x_{max}}[N]$	1,880	3,000	997	
Max. speed [m/s]	5			
Max. acceleration [m/s²]	30			
Max. drive torque M _{A_max} [Nm]	56.8	87.9	27	
Max. stroke 1121 [mm]	5,453	2,150	800	
Typical load capacity [kg]	d capacity [kg] 16			

1) Restrictions due to energy chain may apply. Longer strokes available on request.
2) Depends on selected payload and dynamic response. For comprehensive application advice, please contact HIWIN.
Note: Dimensions and specifications of double axis HD3 can be found in section 15.5 on page 108


Dimensions and specifications of single axis HT200B can be found in section $\overline{1.5}$ on page $\overline{50}$ Dimensions and specifications of single axes HC060B can be found in section $\underline{13.5}$ on page $\underline{92}$


Table 17.14 Drive			
X-axis Y-axis Z-axis			Z-axis
Toothed belt drive element	B35HTD5	B50HTD8	B30HTD5
Feed constant [mm/U]	190	184	170
Toothed belt effective diameter [mm]	60.48	58.57	54.11


Table 17.15 Mechanical properties		
Moving mass Z-axis at 0-stroke [kg]	2.23	
Moving mass Z-axis per 1 m stroke [kg/m]	5.18	
Moving mass Y-axis at O-stroke Z-axis [kg]	13.12	
Moving mass X-axis at O-stroke Y- and Z-axis [kg]	36.77	
Moving mass X-axis per 1 m stroke Y-axis [kg/m]	17.75	
Mass of total system at O-stroke X-, Y- and Z-axis [kg]	55.46	
Mass of total system per 1 m stroke X-axis [kg/m]	19.88	
Mass of total system per 1 m stroke Y-axis [kg/m]	28.00	
Mass of total system per 1 m stroke Z-axis [kg/m]	5.18	
Note: All values without energy chain and without drive		

Two-axis systems HS3

17.6 Dimensions and specifications of HS34-D-T-C

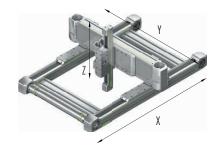


Table 17.16 HS34-D-T-C dimensions	
Total length X-axis L _{Tx} [mm]	$L_{Tx} = L_{ST_x} + 964$
Total length Y-axis L _{Ty} [mm]	$L_{Ty} = L_{ST_y} + 713$
Total length Z-axis L _{Tz} [mm]	$L_{T_Z} = L_{ST_Z} + 426$

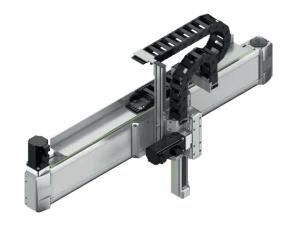
Table 17.17 Energy chain			
	X-axis	Y-axis	Z-axis
Inner cross section W × H [mm]	100 × 35	77 × 25	57 × 25
Bending radius [mm]	125	100	100
End position at electrical zero F [mm]	L _{Xe} = 120	L _{Ye} = -116.5	$L_{Ze} = 259.0 - L_{ST}/2$
End position at mechanical zero [mm]	L _{Xm} = 140	L _{Ye} = -96.5	$L_{Zm} = 249.0 - L_{ST}/2$

Table 17.18 General technical data				
	X-axis	Y-axis	Z-axis	
Axis type	HD4N	HT250B-C	HC080B	
Sledge type	L	L S		
Max. feed force $F_{x_{max}}[N]$	4,385	4,500	1,330	
Max. speed [m/s]	5	5		
Max. acceleration [m/s²]	30	30		
Max. drive torque M _{A_max} [Nm]	201	149	42.3	
Max. stroke ^{1) 2)} [mm]	5,256	2,100	1,200	
Typical load capacity [kg]	30			

1) Restrictions due to energy chain may apply. Longer strokes available on request.
2) Depends on selected payload and dynamic response. For comprehensive application advice, please contact HIWIN.
Note: Dimensions and specifications of double axis HD4 can be found in section 15.6 on page 109

Dimensions and specifications of single axis HT250B can be found in section $\frac{7.6 \text{ on page } 52}{13.6 \text{ on page } 94}$

Table 17.19 Drive			
X-axis Y-axis Z-axis			Z-axis
Toothed belt drive element	B60HTD8	B75HTD8	B40HTD5
Feed constant [mm/U]	288	208	200
Toothed belt effective diameter [mm]	91.67	66.21	63.66

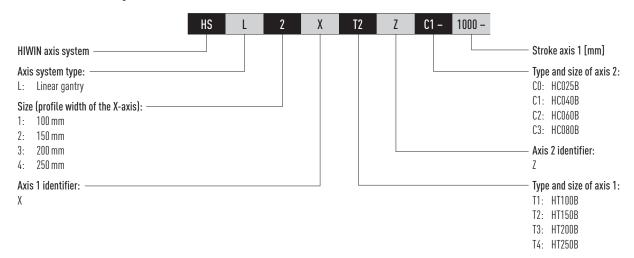

Table 17.20 Mechanical properties		
Moving mass Z-axis at 0-stroke [kg]	4.35	
Moving mass Z-axis per 1 m stroke [kg/m]	9.01	
Moving mass Y-axis at O-stroke Z-axis [kg]	26.20	
Moving mass X-axis at 0-stroke Y- and Z-axis [kg]	73.50	
Moving mass X-axis per 1 m stroke Y-axis [kg/m]	23.09	
Mass of total system at O-stroke X-, Y- and Z-axis [kg]	125.83	
Mass of total system per 1 m stroke X-axis [kg/m]	42.06	
Mass of total system per 1 m stroke Y-axis [kg/m]	40.78	
Mass of total system per 1 m stroke Z-axis [kg/m]	9.01	
Note: All values without energy chain and without drive		

Linear gantries HSL

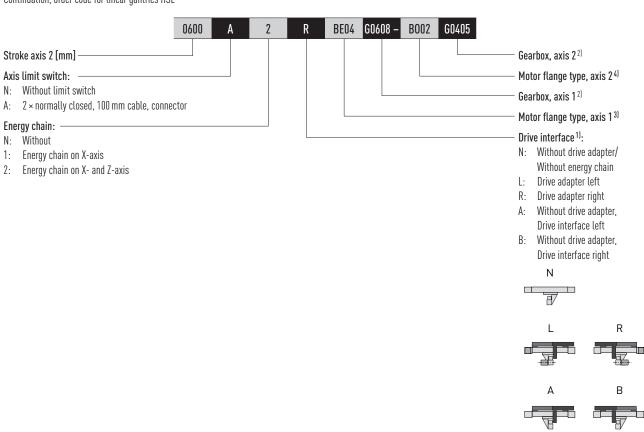
18. Linear gantries HSL

18.1 Properties of the linear gantries HS3

HIWIN linear gantries HSL are flexible units for positioning along the X- and Z-axis. They consist of a HIWIN toothed belt axis HT-B in the X direction and a HIWIN cantilever axis HC-B in the Z direction. HIWIN HSL linear gantries are particularly well suited for two-dimensional movements.


Energy chain

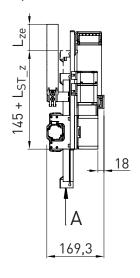
Generously dimensioned energy chains provide space for safely carrying the supply lines. The energy chains are integrated into the complete system in a particularly compact and space-saving way.

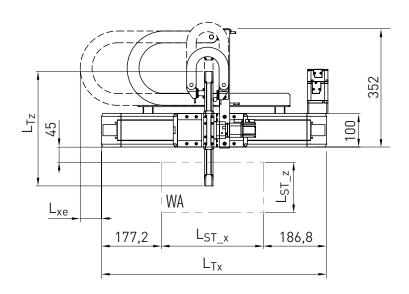


18.2 Order code for linear gantries HSL

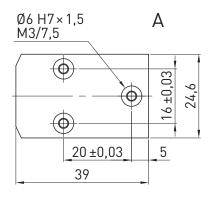
Continuation, order code for linear gantries HSL

¹ If no drive interface is selected, the order code ends after this digit.


²⁾ You can finding matching gearboxes in section 22.1.5.5 from page 170.


³⁾ You can find all flange types in <u>Table 22.2 from page 161</u>. If no flange type is selected, the "Gearbox, axis 1" position is omitted.

⁴⁾ You can find all flange types in <u>Table 22.4 from page 163</u>. If no flange type is selected, the order code ends after this digit.


Linear gantries HSL

18.3 Dimensions and specifications of HSL1-T-C

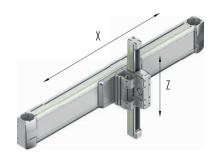

1e

Table 18.1 HSL1-T-C dimensions	
Total length X-axis L _{Tx} [mm]	$L_{Tx} = L_{ST_x} + 364$
Total length Z-axis L_{Tz} [mm]	$L_{Tz} = L_{ST_z} + 190$

Table 18.2 Energy chain			
	X-axis	Z-axis	
Inner cross section W × H [mm]	57 × 25	20 × 21	
Bending radius [mm]	75	48	
End position at electrical zero F [mm]	$L_{Xe} = 7.5$	$L_{Ze} = 151.0 - L_{ST}/2$	
End position at mechanical zero [mm]	L _{Xm} = 15.0	$L_{Zm} = 147.5 - L_{ST}/2$	

Table 18.3 General technical data		
	X-axis	Z-axis
Axis type	HT100B-C	HC025B
Max. feed force $F_{x_{max}}[N]$	813	241
Max. speed [m/s]	5	
Max. acceleration [m/s²]	30	
Max. drive torque M _{A_max} [Nm]	13.6 3.1	
Max. stroke 1121 [mm]	5,552	300
Typical load capacity [kg]	2	

 $^{^{\}rm 1)}$ Restrictions due to energy chain may apply. Longer strokes available on request.

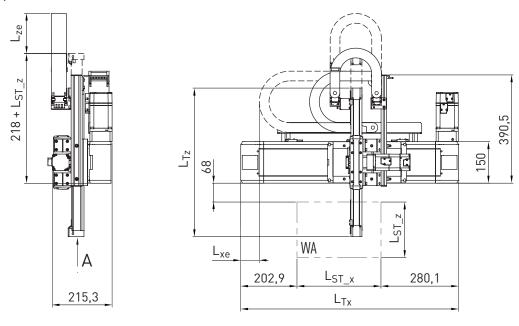

Depends on selected payload and dynamic response. For comprehensive application advice, please contact HIWIN.
 Note: Dimensions and specifications of single axes HT100B can be found in section <u>7.3 on page 46</u>
 Dimensions and specifications of single axis HC025B can be found in section <u>13.3 on page 88</u>


Table 18.4 Drive			
X-axis Z-axis			
Toothed belt drive element	B25HTD5	B12HTD3	
Feed constant [mm/U] 105 81			
Toothed belt effective diameter [mm] 33.42 25.78			

Table 18.5 Mechanical properties		
Moving mass Z-axis at O-stroke [kg]	0.30	
Moving mass Z-axis per 1 m stroke [kg/m]	1.27	
Moving mass X-axis at 0-stroke Z-axis [kg]	2.61	
Moving mass X-axis per 1 m stroke Z-axis [kg/m]	1.27	
Mass of total system at 0-stroke X- and Z-axis [kg]	5.68	
Mass of total system per 1 m stroke X-axis [kg/m]	6.65	
Mass of total system per 1 m stroke Z-axis [kg/m]	1.27	
Note: All values without energy chain and without drive		

Linear gantries HSL

18.4 Dimensions and specifications of HSL2-T-C

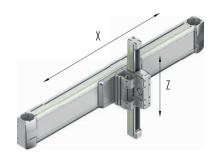
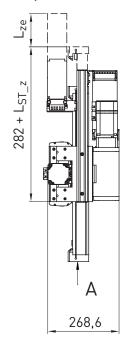


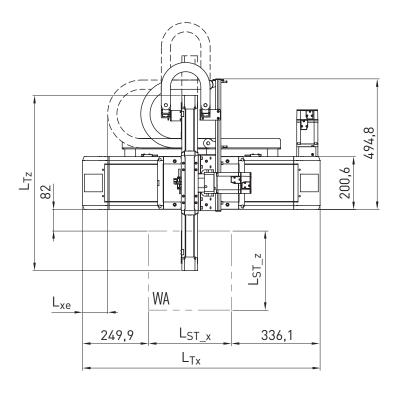
Table 18.6 HSL2-T-C dimensions	
Total length X-axis L _{Tx} [mm]	$L_{Tx} = L_{ST_x} + 483$
Total length Z-axis L _{Tz} [mm]	$L_{Tz} = L_{ST_z} + 286$

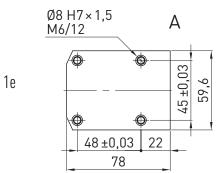
Table 18.7 Energy chain			
X-axis Z-axis			
Inner cross section W × H [mm]	57 × 25	38 × 25	
Bending radius [mm]	75	75	
End position at electrical zero F [mm]	$L_{Xe} = -68.0$	$L_{Ze} = 274.0 - L_{ST}/2$	
End position at mechanical zero [mm]	L _{Xm} = -58.0	$L_{Zm} = 269.0 - L_{ST}/2$	

Table 18.8 General technical data		
	X-axis	Z-axis
Axis type	HT150B-C	HCO40B
Max. feed force $F_{x_{max}}[N]$	1,300	404
Max. speed [m/s]	5	
Max. acceleration [m/s²]	30	
Max. drive torque M _{A_max} [Nm]	32.1 7.9	
Max. stroke 1121 [mm]	5,483	500
Typical load capacity [kg]	[kg] 8	

 $^{^{\}rm 1)}$ Restrictions due to energy chain may apply. Longer strokes available on request.


Depends on selected payload and dynamic response. For comprehensive application advice, please contact HIWIN.
 Note: Dimensions and specifications of single axes HT150B can be found in section 7.4 on page 48
 Dimensions and specifications of single axis HC040B can be found in section 13.4 on page 90


Table 18.9 Drive			
X-axis Z-axis			
Toothed belt drive element	B40HTD5	B20HDT3	
Feed constant [mm/U] 155 123			
Toothed belt effective diameter [mm] 49.34 39.15			


Table 18.10 Mechanical properties		
Moving mass Z-axis at O-stroke [kg]	0.91	
Moving mass Z-axis per 1 m stroke [kg/m]	2.75	
Moving mass X-axis at 0-stroke Z-axis [kg]	6.74	
Moving mass X-axis per 1 m stroke Z-axis [kg/m]	2.75	
Mass of total system at O-stroke X- and Z-axis [kg]	13.96	
Mass of total system per 1 m stroke X-axis [kg/m]	11.13	
Mass of total system per 1 m stroke Z-axis [kg/m]	2.75	
Note: All values without energy chain and without drive		

Linear gantries HSL

18.5 Dimensions and specifications of HSL3-T-C

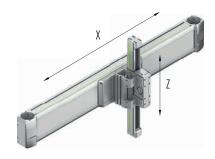
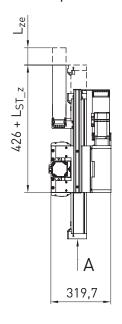


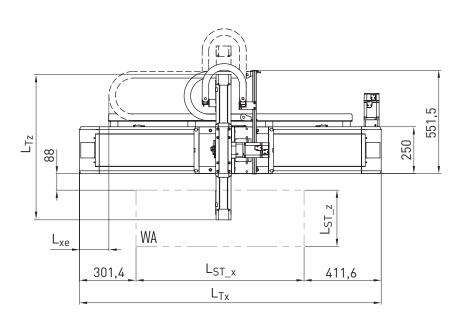
Table 18.11 HSL3-T-C dimensions	
Total length X-axis L _{Tx} [mm]	$L_{Tx} = L_{ST_x} + 586$
Total length Z-axis L _{Tz} [mm]	$L_{Tz} = L_{ST_z} + 364$

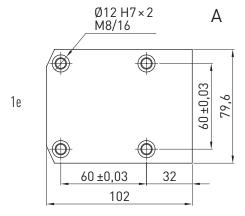
Table 18.12 Energy chain			
X-axis Z-axis			
Inner cross section W × H [mm]	77 × 25	57 × 25	
Bending radius [mm] 100 75			
End position at electrical zero F [mm]	L _{Xe} = -94	$L_{Ze} = 282.5 - L_{ST}/2$	
End position at mechanical zero [mm]	L _{Xm} = -79	L _{Zm} = 275.0 - L _{ST} /2	

Table 18.13 General technical data		
	X-axis	Z-axis
Axis type	HT200B-C	HC060B
Max. feed force $F_{x_{max}}[N]$	3,000	997
Max. speed [m/s]	5	
Max. acceleration [m/s²]	30	
Max. drive torque M _{A_max} [Nm]	87,9	
Max. stroke 1121 [mm]	5,414	800
Typical load capacity [kg]	16	

 $^{^{1)}}$ Restrictions due to energy chain may apply. Longer strokes available on request.


Depends on selected payload and dynamic response. For comprehensive application advice, please contact HIWIN.
 Note: Dimensions and specifications of single axes HT200B can be found in section 7.5 on page 50
 Dimensions and specifications of single axis HC060B can be found in section 13.5 on page 92


Table 18.14 Drive			
X-axis Z-axis			
Toothed belt drive element	B50HTD8	B30HTD5	
Feed constant [mm/U] 184 170			
Toothed belt effective diameter [mm] 58.57 54.11			


Table 18.15 Mechanical properties			
Moving mass Z-axis at O-stroke [kg]	2.23		
Moving mass Z-axis per 1 m stroke [kg/m]	5.18		
Moving mass X-axis at 0-stroke Z-axis [kg]	13.12		
Moving mass X-axis per 1 m stroke Z-axis [kg/m]	5.18		
Mass of total system at O-stroke X- and Z-axis [kg]	27.14		
Mass of total system per 1 m stroke X-axis [kg/m]	17.75		
Mass of total system per 1 m stroke Z-axis [kg/m]	5.18		
Note: All values without energy chain and without drive			

Linear gantries HSL

18.6 Dimensions and specifications of HSL4-T-C

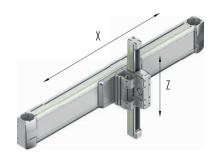

L_{ST} Stroke WA Working space 1e Interface application

Table 18.16 HSL4-T-C dimensions		
Total length X-axis L _{Tx} [mm]	$L_{Tx} = L_{ST_x} + 713$	
Total length Z-axis L _{Tz} [mm]	$L_{Tz} = L_{ST_z} + 426$	

Table 18.17 Energy chain			
	X-axis	Z-axis	
Inner cross section W × H [mm]	77 × 25	57 × 25	
Bending radius [mm]	100	100	
End position at electrical zero F [mm]	L _{Xe} = -197.5	L _{Ze} = 259.0 - L _{ST} /2	
End position at mechanical zero [mm]	L _{Xm} = -177.5	L _{Zm} = 249.0 - L _{ST} /2	

144

Table 18.18 General technical data									
	X-axis	Z-axis							
Axis type	HT250B-C	HC080B							
Max. feed force $F_{x_{max}}[N]$	4,500	1,330							
Max. speed [m/s]	5								
Max. acceleration [m/s²]	30								
Max. drive torque M _{A_max} [Nm]	149	42.3							
Max. stroke 1121 [mm]	5,397	1200							
Typical load capacity [kg]	30								

 $^{^{\}rm 1)}$ Restrictions due to energy chain may apply. Longer strokes available on request.

Depends on selected payload and dynamic response. For comprehensive application advice, please contact HIWIN.
 Note: Dimensions and specifications of single axes HT250B can be found in section 7.6 on page 52
 Dimensions and specifications of single axis HC080B can be found in section 13.6 on page 94

Table 18.19 Drive									
X-axis Z-axis									
Toothed belt drive element	B75HTD8	B40HTD5							
Feed constant [mm/U]	208	200							
Toothed belt effective diameter [mm]	66.21	63.66							

Table 18.20 Mechanical properties	
Moving mass Z-axis at O-stroke [kg]	4.35
Moving mass Z-axis per 1 m stroke [kg/m]	9.01
Moving mass X-axis at 0-stroke Z-axis [kg]	26.20
Moving mass X-axis per 1 m stroke Z-axis [kg/m]	9.01
Mass of total system at O-stroke X- and Z-axis [kg]	49.40
Mass of total system per 1 m stroke X-axis [kg/m]	23.09
Mass of total system per 1 m stroke Z-axis [kg/m]	9.01
Note: All values without energy chain and without drive	

Adapters for cross tables and multi-axis systems

19. Adapters for cross tables and multi-axis systems

HIWIN adapters for cross tables and multi-axis systems allow two and more axes to be flexibly combined. This allows individual multi-axis systems to be designed quickly and easily. Forces and torques are safely transmitted through force and form closure. Centring sleeves allow for precise and reproducible connection. All adapters are supplied ready for installation including mounting material.

Depending on the desired alignment of the axes to be connected, four basic adapter types are available:

CPN: Adapter for connecting the axis profile of the upper axis to the carriage of the

lower axis. Both carriages point in the same direction.

CPR: Adapter for connecting the axis profile of the upper axis with the carriage of the lower axis, with the two carriage rotated 90° in relation to each other.

CCN: Adapter for connecting the carriage of the upper axis to the carriage of the lower

CCR: Adapter for connecting the drive block of the upper axis to the carriage of the lower axis, with the carriage and the drive block rotated 90° in relation to each other.

19.1 Product selection

19.1.1 Axis combinations depending on the size

Tabl	e 19.1	Overv	iew of pos	ssible con	nbinations	s as a fun	ction of th	ie size												
			Y-axis																	
			НМ				HT			НС				KK						
			040	060	080	120	100	150	200	250	25	40	60	80	30	40	50	60	86	100
	НМ	040	● ^{1]} ■ ^{1]}				● ^{1]} ■ ^{1]}								• 🛦	• 🛦				
		060	● 1]	● ^{1]} ■ ^{1]}			● ^{1]}	● ^{1]} ■ ^{1]}								• 🛦	• 🛦			
		080		● ^{1]}	● ^{1]} ■ ^{1]}			● ^{1]}	● ^{1]} ■ ^{1]}								• 🛦	• 🛦		
xis		120			• 1]	● 1]			● 1]	● ^{1]} ■ ^{1]}										
X-axis	нт	100					•=4				*						• 🛦	• 🛦		
		150						•=4				*						• 🛦	• 🛦	
		200		•=4				•=4					*						• 🛦	•
		250			•	•				•				*						

[●] CPN; ■ CPR; ▲ CCN; ★ CCR

Note: Depending on the selected axis configuration, collisions of attachments or covering of mounting holes may occur. This must be checked in each individual case.

¹⁾ Two single axes HM or one double axis HD are required in the X-axis.

19.1.2 Cross table

Cross table combinations made up of two single axes.

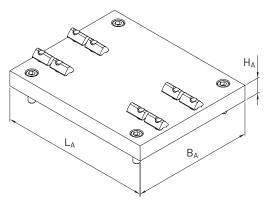
Table 19.2 Product selectio	n diagram			
Connection	Х-Ү	X-Z	Z-X	Page :
CPN adapter ● Carriage – profile				Page 149
CPR adapter ■ Carriage – profile (rotated 90°)				Page 151
CPN adapter ▲ Carriage – carriage				Page 153
CPN adapter ₩ Carriage - drive block				Page 154

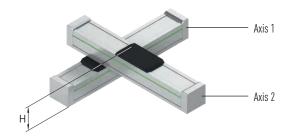
19.1.3 Two-axis system Two-axis systems with two single axis or one double axis as the foundation.

Table 19.3 Product selection	diagram			
Connection	Х-Ү	X-Z	Z-X	Page :
CPN adapter ● Carriage – profile				Page 150
CPR adapter ■ Carriage – profile (rotated 90°)				Page 152

Adapters for cross tables and multi-axis systems

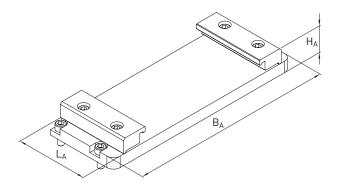
19.1.4 Three- and multi-axis system
Three- and multi-axis systems can be created flexibly by combining several adapters from <u>Table 19.2</u> and <u>Table 19.3</u>. Some examples follow.

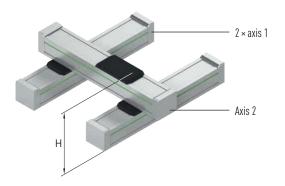

Table 19.4 Example of multi-axis systems		
Complete system X-Y-Z	Adapter X-Y	Adapter Y-Z
	Page 151	Page 153
	Page 151	Page 154
	Page 152	Page 149
	Page 152	Page 153
	Page 152	Page 154



19.2 CPN adapters

19.2.1 CPN adapters for single axes HIWIN adapters for combining two single axes (axis 1: HM/HT; axis 2: HM/HT/KK) via a carriage-profile connection.



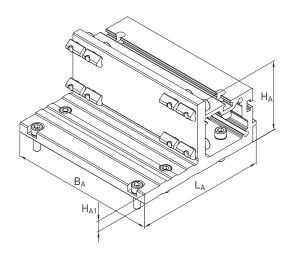

Axis 1		Axis 2		L _A [mm]	B _A [mm]	H _A [mm]	H [mm]	Weight [kg]	Article numbe
Axis type	Size (profile width)	Axis type	Size (profile width)						
НМ	040	KK	30	59	79	12	95.0	0.159	25-001622
	040		40	70	79	12	102.0	0.187	25-001623
	060		40	76	114	12	120.0	0.291	25-001626
	060		50	92	114	12	128.5	0.366	25-001627
	080		50	98	107	12	150.5	0.376	25-001630
	080		60	114	104	15	159.5	0.513	25-001631
НТ	100B/100S	НМ	040	99	72	12	134.0	0.265	25-001608
	100L		040	99	72	12	142.0	0.265	25-001608
	150		040	79	149	12	156.0	0.417	25-001609
	150		060	149	120	15	177.0	0.792	25-001610
	200		060	199	102	15	193.0	0.907	25-001611
	200		080	199	142	15	215.0	1.287	25-001612
	250		080	249	126	20	230.0	1.858	25-001613
	250		120	249	180	20	275.0	2.558	25-001614
	100B/100S	HT	100B/100S	158	100	12	136.0	0.547	25-001615
	100B/100S		100L	158	100	12	144.0	0.547	25-001615
	100L		100B/100S	158	100	12	144.0	0.547	25-001615
	100L		100L	158	100	12	152.0	0.547	25-001615
	150		100	210	100	15	161.0	0.882	25-001616
	150		150	222	150	15	183.0	1.420	25-001617
	200		150	274	150	15	199.0	1.756	25-001618
	200		200	294	200	15	215.0	2.519	25-001619
	250		200	348	200	20	230.0	3.918	25-001620
	250		250	296	250	20	240.0	4.146	25-001621
	100B/100S	KK	50	100	99	12	112.5	0.326	25-001624
	100L		50	100	99	12	120.5	0.326	25-001624
	100		60	108	99	12	118.5	0.371	25-001625
	150		60	149	118	15	143.5	0.724	25-001628
	150		86	149	118	15	163.0	0.732	25-001629
	200		86	199	142	15	179.0	1.170	25-001632
	200		100	199	142	15	187.0	1.193	25-001633

Adapters for cross tables and multi-axis systems

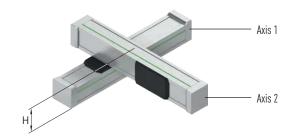
19.2.2 CPN adapters for double axesHIWIN adapters for combining two single axes HM or a double axis HD with a single axis HM/HT via a carriage-profile connection.

Table 19.6 Sp	ecifications for CPN ad	apters for doub	le axes							
Axis 1		Axis 2		L _A [mm]	B _A [mm]	H _A [mm]	H [mm]	Weight [kg]	Article number	
Axis type	Size (profile width)	Axis type	Size (profile width)							
HM (2 ×) ¹⁾	040	НМ	040	76	82	12	132	0.543	25-001594	
	060		040	76	114	12	150	0.710	25-001595	
	060		060	76	114	12	168	0.944	25-001596	
	080		060	79	150	15	193	1.375	25-001597	
	080		080	79	150	15	215	1.457	25-001598	
	120		080	119	185	20	265	3.146	25-001599	
	120		120	119	240	20	310	3.826	25-001600	
	040 2)	HT	100B/100S	76	151	12	134	0.876	25-001601	
	040 2)		100L	76	151	12	142	0.876	25-001601	
	0603)		100B/100S	76	164	12	152	0.944	25-001602	
	0603)		100L	76	164	12	160	0.944	25-001602	
	060 2)		150	76	214	12	174	1.324	25-001603	
	0803)		150	79	244	12	196	1.568	25-001604	
	0803)		200	110	287	15	215	3.188	25-001605	
	1203)		200	119	296	20	265	4.498	25-001606	
	120 ³⁾		250	119	351	20	275	5.180	25-001607	

¹⁾ Alternative: Double axis HD

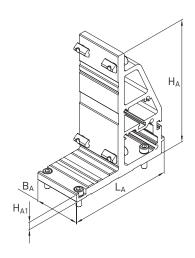

²⁾ HM axis with carriage length L required

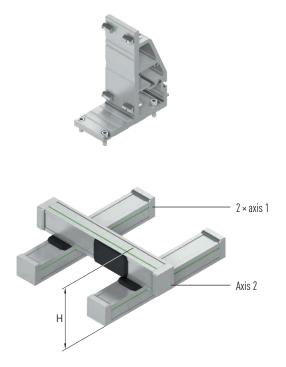
³⁾ HM axis with carriage length M or L required



19.3 CPN adapters

19.3.1 CPR adapters for single axes (rotated 90°)HIWIN adapters for combining two single axes (axis 1: HT; axis 2: HM/HT) via a carriage-profile connection (axis 2 rotated 90°).





Axis 1		Axis 2		L _A [mm]	B _A [mm]	H _A [mm]	H _{A1} [mm]	H [mm]	Weight [kg]	Article number
Axis type	Size (profile width)	Axis type	Size (profile width)							
HT	100B/100S	НМ	040	122	99	56.0	11.5	118.0	0.684	25-001568
	100L		040	122	99	56.0	11.5	126.0	0.684	25-001568
	150		040	110	149	56.0	11.5	140.0	0.955	25-001569
	150		060	134	149	71.5	11.5	155.5	1.173	25-001570
	200		060	134	199	71.5	11.5	171.5	1.541	25-001571
	200		080	183	199	97.5	17.5	197.5	3.542	25-001572
	250		080	196	249	97.5	17.5	207.5	4.623	25-001573
	250		120	206	249	137.5	17.5	247.5	5.191	25-001574
	100B/100S	HT	100B/100S	122	99	111.5	11.5	173.5	0.956	25-001575
	100B/100S		100L	122	99	111.5	11.5	181.5	0.956	25-001575
	100L		100B/100S	122	99	111.5	11.5	181.5	0.956	25-001575
	100L		100L	122	99	111.5	11.5	189.5	0.956	25-001575
	150		100	111	149	111.5	11.5	195.5	1.366	25-001576
	150		150	134	149	161.5	11.5	245.5	1.836	25-001577
	200		150	190	199	167.5	17.5	267.5	4.131	25-001578
	200		200	190	199	217.5	17.5	317.5	5.428	25-001579
	250		200	196	249	217.5	17.5	327.5	6.881	25-001580
	250		250	206	249	236.0	17.5	377.5	7.190	25-001581

Adapters for cross tables and multi-axis systems

19.3.2 CPR adapters for double axes (rotated 90°)
HIWIN adapters for combining two single axes HM or a double axis HD with a single axis HM/HT (axis 2 rotated 90°) via a carriage-profile connection.

Table 19.8 Sp	Table 19.8 Specifications for CPR adapters for double axes										
Axis 1		Axis 2		L _A [mm]	B _A [mm]	H _A [mm]	H _{A1} [mm]	H [mm]	Weight [kg]	Article number	
Axis type	Size (profile width)	Axis type	Size (profile width)								
HM (2 ×) ¹⁾	040	НМ	040	112	39	56.0	11.5	116.0	0.544	25-001561	
	060		060	134	59	71.5	11.5	149.5	0.971	25-001562	
	080		080	197	79	97.5	17.5	197.5	3.096	25-001563	
	040	HT	100	112	39	111.5	11.5	171.5	0.760	25-001564	
	060		150	134	59	161.5	11.5	239.5	1.520	25-001565	
	080		200	197	79	217.0	17.5	317.5	4.516	25-001566	
	120		250	207	119	236.0	17.5	412.5	7.125	25-001567	

^{1]} Alternative: Double axis HD

19.4 CCN adapters

19.4.1 CCN adapters for single axes

HIWIN adapters for combining two single axes (axis 1: HM/HT; axis 2: HM, HT, KK) via a carriage-carriage connection.

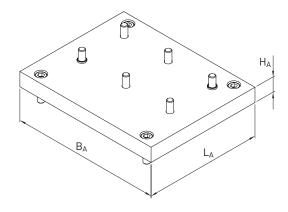


 Table 19.9 Specifications for CCN adapters for single axes

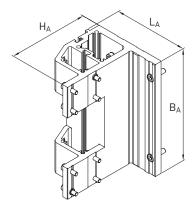
Axis 1		Axis 2		L _A [mm]	B _A [mm]	H _A [mm]	H [mm]	Weight [kg]	Article number
Axis type	Size (profile width)	Axis type	Size (profile width)						
НМ	040	KK	30	39	79	12	87	0.105	25-001634
	040		40	39	79	12	92	0.110	25-001635
	060		40	59	112	15	113	0.256	25-001638
	060		50	59	112	15	119	0.287	25-001639
	080		50	79	112	15	141	0.345	25-001642
	080		60	79	112	15	148	0.372	25-001643
HT	100B/100S	НМ	040	97	99	12	134	0.335	25-001582
	100L		040	97	99	12	142	0.335	25-001582
	150		040	79	149	12	156	0.409	25-001583
	150		060	118	149	15	177	0.783	25-001584
	000		0.40	400	400	4-	400	0.05/	05 004505

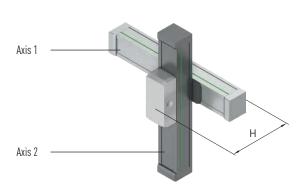
	060		50	59	112	15	119	0.287	25-001639
	080		50	79	112	15	141	0.345	25-001642
	080		60	79	112	15	148	0.372	25-001643
HT	100B/100S	НМ	040	97	99	12	134	0.335	25-001582
	100L		040	97	99	12	142	0.335	25-001582
	150		040	79	149	12	156	0.409	25-001583
	150		060	118	149	15	177	0.783	25-001584
	200		060	102	199	15	193	0.876	25-001585
	200		080	142	199	15	215	1.246	25-001586
	250		080	249	180	20	230	2.547	25-001587
	250		120	249	180	20	275	2.605	25-001646
	100B/100S	HT	100B/100S	99	134	12	148	0.894	25-001588
	100B/100S		100L	99	134	12	156	0.894	25-001588
	100L		100B/100S	99	134	12	156	0.894	25-001588
	100L		100L	99	134	12	164	0.894	25-001588
	150		100	149	142	15	176	1.758	25-001589
	150		150	149	182	15	198	2.257	25-001590
	200		150	199	194	15	214	3.196	25-001591
	200		200	199	240	15	230	3.958	25-001592
	250		200	249	249	20	250	6.803	25-001593
	250		250	249	296	20	260	8.109	25-001647

 $^{^{1)}\,\}mathrm{KK}$ axes with two blocks required

Adapters for cross tables and multi-axis systems

Table 19.9 Sp	Table 19.9 Specifications for CCN adapters for single axes												
Axis 1		Axis 2		L _A [mm]	B _A [mm]	H _A [mm]	H [mm]	Weight [kg]	Article number				
Axis type	Size (profile width)	Axis type	Size (profile width)										
HT	100B/100S	KK ¹⁾	50	98	104	12	100	0.339	25-001636				
	100L		50	98	104	12	108	0.339	25-001636				
	100B/100S		60	98	113	12	107	0.369	25-001637				
	100L		60	98	113	12	115	0.369	25-001637				
	150		60	116	149	15	132	0.675	25-001640				
	150		86	114	168	15	145	0.808	25-001641				
	200		86	140	199	15	161	1.164	25-001644				
	200		100	140	199	15	170	1.206	25-001645				

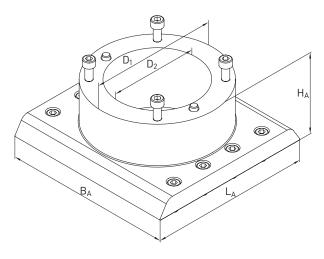

¹⁾ KK axes with two blocks required


19.5 CCR adapters

19.5.1 CCR adapters for single axes

HIWIN adapters for combining linear tables HT with cantilever axes HC. The connection is made between the carriage of linear table HT and the drive block of cantilever axis HC.

Table 19.10 Specifications for CCR adapters for single axes												
Axis 1		Axis 2		L _A [mm]	B _A [mm]	H _A [mm]	H [mm]	Weight [kg]	Article number			
Axis type			Size (profile width)									
HT	100B/100S	НС	025	80	100	79.8	143.25	0.298	25-002359			
	100L		025	80	100	79.8	151.25	0.298	25-002359			
	150		040	112	168	120.8	207.3	1.333	25-002360			
	200		060	131	210	161.3	264.8	2.161	25-002361			
	250		080	198	249	209.7	319.7	5.780	25-002362			
			100	207	312	235.7	365.7	7.705	80064588			


20. Adapters for robot axes

With the HIWIN adapters for robot axes, a lightweight robot and a HIWIN linear axis HT can be combined. This makes it quick and easy to design a 7th axis system. The adapters are designed so that the robots can rotate freely in the lower axis even with axes with an energy chain attached. The HT linear axes with robot adapters are optimised for horizontal installation. Axes for vertical use on request.

All adapters are supplied ready for installation:

- Including mounting material for fastening the adapter on the carriage of the axis.
- Including mounting material for fastening the robot on the adapter

Robot		Axis		LA	W _A	H _A	Ø D ₁	Ø D ₂	Weight	Article number
Manufacturer	Size	Model	Size	[mm]	[mm]	[mm]	[mm]	[mm]	[kg]	Adapter set
Universal	UR03	HTB, HTS	200	191	199	70	128	90	2.528	25-002658
Robots	UR05			191	199	70	151	105	2.873	25-002657
	UR10 + UR16		250	231	249	60	190	95	5.100	25-002659
Techman	TM5-700 + TM5-900	HTB, HTS	200	190	199	90	177	120	4.242	25-002661
	TM12 + TM14		250	230	249	75	203	130	5.391	25-002664

Distance measuring system

21. Distance measuring system

If the precision of the linear axis given by the drive element is not sufficient for an application, the positioning and repeat accuracy of spindle and toothed belt axes can be increased by using a distance measuring system. On the linear axes HM-B, HM-S, HT-B, HT-S and HC-B, the distance measuring system is located externally, on the side of the carriage. See Fig. 21.2 and Fig. 21.3. Linear motor axes HT-L are supplied with distance measuring system as standard.

The distance measuring system is integrated inside the axis to save space. Different measuring systems are available depending on the requirements for measuring principle, interface and resolution, see Table 21.1. For motionless commutation of linear motor axes HT-L, the HIWIN MAGIC distance measuring system can also be combined with the HIWIN digital hall sensor.

Table 21.1 Se	Table 21.1 Selection of distance measuring system													
Order code	Description	Repeatabil	ity [mm]		Signal period	Resolution	Interface		Measuring	Max. stroke				
		H_B	H_S	H_L	[mm]	[µm]			principle	[mm]				
Α	MAGIC analog	± 0.02	± 0.01	± 0.005	1	_	Incremental 1 V _{SS} (analogue		Magnetic	_				
B ^{2]6]}	MAGIC analog, Hall-Sensor digital	_	-	± 0.005	1	_	Incremental	1 V _{SS} (analogue) ¹⁾	Magnetic	_				
D	MAGIC digital	± 0.02	± 0.01	± 0.005	1	1	Incremental	TTL (digital) ¹⁾	Magnetic	_				
E ^{2]6]}	MAGIC digital, Hall-Sensor digital	_	-	± 0.005	1	1	Incremental	TTL (digital) ¹⁾	Magnetic	_				
Н	LIC 211	_	_	± 0.005	_	0.1	Absolute, EnDat 2.2	EnDat 22	Optical	5,600 ³⁾				
R ⁴⁾	BML-S1G0 BiSS-C	_	_	± 0.005	2	1	Absolute, 32-bit	BiSS-C, 1V _{SS}	Magnetic	_				
S ^{4]}	BML-S1G0 SSI	_	_	± 0.005	2	1	Absolute, 26-bit	SSI	Magnetic	_				

Other distance measuring systems on request

¹⁾ Compatible with all common servo drives and the HIWIN servo drive ED1. For more information on HIWIN servo drives, see the "Servo drives and servo motors" catalogue or visit hiwin.de.

²⁾ With digital hall sensor for motionless commutation.

 $^{^{}m 3)}$ Depending on the size and option, up to 5,900 mm possible on request

⁴⁾ The distance measuring system has a safety-related, analogue, incremental real-time signal

⁵⁾ depending on the size and option up to max. 3,800 mm possible on request

21.1 External distance measuring system HIWIN MAGIC for linear axes HM-B, HM-S, HT-B, HT-S and HC

The HIWIN MAGIC distance measuring system is located on the side of the carriage in linear modules HM-B and HM-S, linear tables HT-B and HT-S and cantilever axes HC-B. The dimensions can be found in Fig. 21.1, Fig. 21.2, Fig. 21.3 and Table 21.2. On linear modules HM-B and HM-S and on linear tables HT-B and HT-S, the distance measuring system is located on the opposite side of the drive adaptation or the limit switches. On linear axes without adaptation material and limit switches, the distance measuring system is located on the left-hand side by default. On cantilever axes HC, the distance measuring system is always located on the left-hand side by default, just like the limit switches. Other types are available on request.

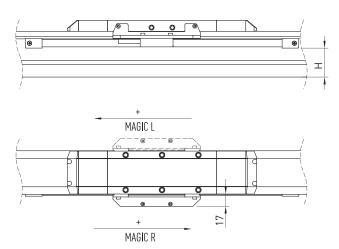


Fig. 21.1 MAGIC distance measuring system – linear axes HM-B and HM-S

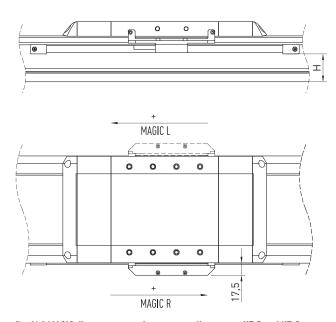


Fig. 21.2 MAGIC distance measuring system – linear axes HT-B and HT-S

Distance measuring system

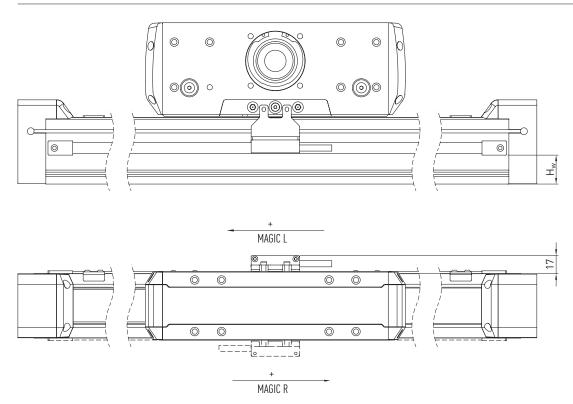


Fig. 21.3 MAGIC distance measuring system – cantilever axes HC $\,$

Table 21.2 Dimensions of N	AGIC distance measuring s	system for linear axes HM,	HT and HC		
Linear axis	Distance H _w [mm]	Linear axis	Distance H _w [mm]	Linear axis	Distance H _w [mm]
HM040	25	HT100	27	HC025B	12
HM060	36	HT150	38	HC040B	22
HM080	54	HT200	55	HC060B	27
HM120	93	HT250	59	HC080B	49
				HC100B	71.5

21.2 Internal distance measuring system for linear axes $\operatorname{HT-L}$

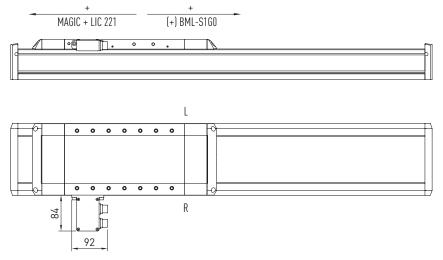


Fig. 21.4 Linear axis HT-L: Connection interface "D" – connector right/rear

22. Drive adaptation

22.1 Drive adaptation of linear modules HM-B, linear tables HT-B, bridge axes HB -B, cantilever axes HC and double axes HD

22.1.1 Motor adaptation of linear modules HM-B and double axes HD

Adaptation to the linear axis is of multi-sectional design to allow simple flange-mounting of all standard motors and gearboxes.

The flange type set comprises the following components:

- Coupling housing KB
- Coupling components
- Motor adapter plate AM or gearbox adapter plate AG and motor gearbox adapter plate GM (omitted in NG01 – NG07)

The dimensions of the coupling housing, motor adapter plate as well as the gear adapter plate can be found in section <u>22.1.5 from page 164</u>. Adaptations for motors from other manufacturers can be found in the configurator at hiwin.de.

Motor adaptation of linear modules with toothed belt drive (HM-B)

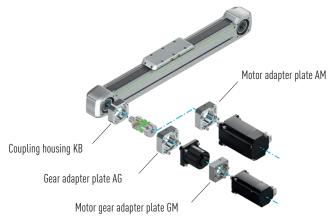


Fig. 22.1 Motor adaptation of linear modules HM-B

Gear adapter plate AG: Motor gear adapter plate GM: Motor adapter plate AM: Adapter from axis to gearbox Adapter from gearbox to motor Adapter from axis to motor

Motor adaptation of double axes (HD)

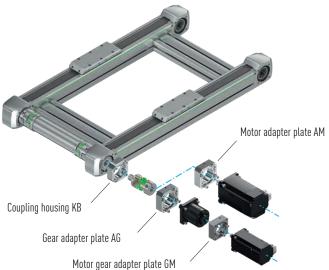


Fig. 22.2 Motor adaptation of double axes HD

Gear adapter plate AG: Motor gear adapter plate GM: Motor adapter plate AM: Adapter from axis to gearbox Adapter from gearbox to motor Adapter from axis to motor

Motor adaptation of multi-axis systems (HS)

The suitable motor adapter for HIWIN multi-axis systems HS must be selected separately for each axis.

Drive adaptation

Table	able 22.1 Order code for position flange type 11 – linear modules HM-B and double axes HD														
Drive)	HM040B	/HD1		HM060B/	HD2		HM080B	/HD3		HM120B/	HD4	HM120B-	H/HD4-H	
Manı	Manufacturer/Type 0 m		With PLE40	With PLQE60	Only motor	With PLQE60	With PLQE80	Only motor	With PLQE80	With PLQE120	Only motor	With PLQE120	Only Motor	With PLQE120	With PSBN142
Gear	box adapter		NG01	NG02		NG03	NG04		NG05	NG06		NG07			
	EM1-C-M-05-2		HW16	HW16		HW15									
	EM1-C-M-10-2		HW16	HW16		HW15									
	EM1-C-M-20-2	HW03		HW03		HW05	HW05		HW10						
HIWIN	EM1-C-M-40-2	HW03		HW03		HW05	HW05		HW10						
₹	EM1-C-M-75-2				HW06		HW06		HW08						
	EM1-A-M-1K-2				HW25 ²⁾			HW13		HW13		HW14		HW27 ²⁾	HW27 ^{2]}
	EM1-D-M-1A-2				HW25 ²⁾			HW13		HW13		HW14		HW27 ²⁾	HW27 ²⁾
	EM1-D-M-2K-2				HW25 ²⁾			HW13		HW13	HW14	HW14		HW27 ²⁾	HW27 ²⁾

PLE, PLQE and PSBN are registered trademarks of Neugart GmbH

22.1.2 Drive adaptation of linear tables HT-B

The drive adaptation of linear table HT-B is of multi-sectional design to allow for simple flange-mounting of all standard motors and gearboxes.

The flange type set comprises the following components:

- Coupling components
- Motor adapter plate AM or gearbox adapter plate AG and motor gearbox adapter plate GM (omitted in NG11-NG15)

The dimensions of the coupling housing, motor adapter plate as well as the gear adapter plate can be found in section <u>22.1.5 from page 164</u>. Adaptations for motors from other manufacturers can be found in the configurator at hiwin.de.

¹⁾ See order code <u>Page 25</u> for linear modules HM-B and <u>Page 105</u> double axes HD

²⁾ Drive not suitable for Y-axis of HIWIN multi-axis systems HS

Motor adaptation of linear tables with toothed belt drive (HT-B)

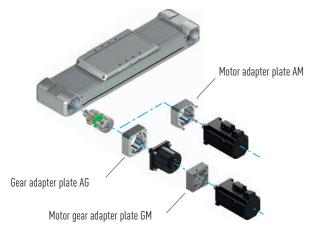


Fig. 22.3 Motor adaptation of linear tables HT-B

Gear adapter plate AG: Adapter from axis to gearbox

Motor gear adapter plate GM: Adapter from gearbox to motor

Motor adapter plate AM: Adapter from axis to motor

Table	22.2 Order code fo	r position fla	nge type ¹⁾ – l	inear tables H	T-B								
Drive	9	HT100B			HT150B			HT200B		HT250B	HT250B		
Man	ufacturer/Type	Only motor	With PLE40	With PLQE60	Only motor	With PLQE80	With PLQE120	Only motor	With PLQE120	Only motor	With PLQE120		
Gear	rbox adapter		NG11	NG12		NG13	NG14		NG15		NG15		
	EM1-C-M-05-2		HW16	HW16									
	EM1-C-M-10-2		HW16	HW16									
	EM1-C-M-20-2			HW03		HW10							
₹	EM1-C-M-40-2	HW03		HW03		HW10							
HIMIN	EM1-C-M-75-2					HW08							
	EM1-A-M-1K-2				HW13 ²⁾		HW13	HW14	HW14		HW14		
	EM1-D-M-1A-2				HW13 ²⁾		HW13	HW14	HW14		HW14		
	EM1-D-M-2K-2				HW13 ²⁾			HW14	HW14	HW14	HW14		

PLE and PLQE are registered trademarks of Neugart GmbH

22.1.3 Drive adaptation of bridge axes HB-B

The drive adaptation of bridge axis HB-B is of multi-sectional design to allow for simple flange-mounting of all standard motors and gearboxes.

The flange type set comprises the following components:

- Coupling housing KB
- Coupling components
- Motor adapter plate AM or gearbox adapter plate AG and motor gearbox adapter plate GM (omitted in NG41 and NG42)

The dimensions of the coupling housing, motor adapter plate as well as the gear adapter plate can be found in section <u>22.1.5 from page 164</u>. Adaptations for motors from other manufacturers can be found in the configurator at hiwin.de.

¹⁾ See order code Page 45

²⁾ Drive not suitable for Y-axis of HIWIN multi-axis systems HS

Drive adaptation

Motor adaptation of bridge axes with toothed belt drive (HB-B)

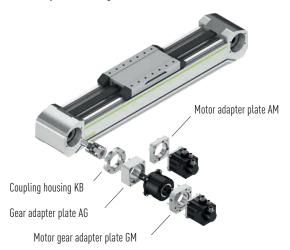


Fig. 22.4 Motor adaptation of bridge axes HB-B

Gear adapter plate AG: Adapter from axis to gearbox

Motor gear adapter plate GM: Adapter from gearbox to motor

Motor adapter plate AM: Adapter from axis to motor

Table	22.3 Order code fo	or position flange type ^{1]} – Bridge axes HB-B		
Drive		HB250B		
Manu	ufacturer/Type	Only motor	With PLQE120	With PSBN142
Gear	box adapter		NG11	NG12
_	EM1-A-M-1K-2		HW27 ²)	HW27 ²⁾
HIWIN	EM1-D-M-1A-2		HW27 ²)	HW27 ²⁾
-	EM1-D-M-2K-2		HW27 ²)	HW27 ²⁾

PLQE and PSBN are registered trademarks of Neugart GmbH

¹⁾ See order code Page 45

 $^{^{\}rm 2)}$ Drive not suitable for Y-axis of HIWIN multi-axis systems HS

22.1.4 Drive adaptation of cantilever axis HC-B

Adaptation to the linear axis is of multi-sectional design to allow simple flange-mounting of all standard motors and gearboxes.

The flange type set comprises the following components:

- Coupling housing KB
- Coupling components
- Motor adapter plate AM or gearbox adapter plate AG and motor gearbox adapter plate GM (omitted in NG21-NG27)

The dimensions of the coupling housing, motor adapter plate as well as the gear adapter plate can be found in section <u>22.1.5 from page 164</u>. Adaptations for motors from other manufacturers can be found in the configurator at hiwin.de.

Motor adaptation of cantilever axes (HC-B)

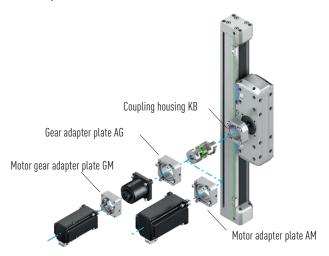


Fig. 22.5 Motor adaptation of cantilever axes HC-B

Gear adapter plate AG: Adapter from axis to gearbox

Motor gear adapter plate GM: Adapter from gearbox to motor

Motor adapter plate AM: Adapter from axis to motor

Tabl	e 22.4 Order code t	for positi	on flange	e type 1)	– cantile	ver axes	НС-В										
Driv	re	HC025B		HC040B			HC060B			HC080B			HC100B			HC150B	
Mar	nufacturer/Type	Only motor	With PLE40	Only motor	With PLE40	With PLQE60	Only motor	With PLQE60	With PLQE80	Only motor	With PLQE80	With PLQE120	Only Motor	With PLQE80	With PLQE120	Only Motor	With PLQE120
Gea	rbox adapter		NG21		NG22	NG23		NG24	NG25		NG26	NG27		NG28	NG29		NG30
	EM1-C-M-05-2		HW17 ^{2]}		HW16 ^{2]}	HW16 ²⁾		HW15 ²⁾									
	EM1-C-M-10-2	HW17 ²	HW17 ^{2]}		HW16 ²⁾	HW16 ²⁾		HW15 ²⁾									
	EM1-C-M-20-2	HW24 ²				HW03 ²⁾		HW05 ²⁾	HW05 ²⁾		HW10 ²⁾			HW23 ²⁾			
N.	EM1-C-M-40-2	HW24 ²		HW03 ²⁾		HW03 ²⁾		HW05 ²⁾	HW05 ²⁾		HW10 ²⁾			HW23 ²⁾			
HIWIN	EM1-C-M-75-2								HW06 ²⁾		HW08 ²)			HW24 ²⁾			
	EM1-A-M-1K-2						HW25 ²⁾			HW13 ²⁾		HW13 ^{2]}			HW14 ²⁾		HW26 ²⁾
	EM1-D-M-1A-2						HW25 ²⁾			HW13 ²⁾		HW13 ²⁾			HW14 ²		HW26 ²)
	EM1-D-M-2K-2						HW25 ²⁾			HW13 ^{2]}		HW13 ^{2]}			HW14 ^{2]}		HW26 ^{2]}

PLE and PLQE are registered trademarks of Neugart GmbH

¹⁾ See order code Page 87

²⁾ Drive not suitable for Y-axis of HIWIN multi-axis systems HS

Drive adaptation

22.1.5 Dimensions of motor adaptation of linear modules HM-B, linear tables HT-B, bridge axes HB-B, cantilever axes HC and double axes HD

The total width of linear axes with toothed belt drive depends on the following factors:

- Adaptation material (coupling housing KB, motor adapter plate AM, gear adapter plate AG, motor gear adapter plate GM)
- Gearbox
- Motor

Linear axis without gearbox

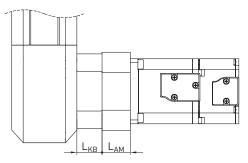


Fig. 22.6 Motor connection of linear module HM-B without gearbox

 L_{KB} Length of coupling housing, see <u>Table 22.5</u> L_{AM} Length of motor adapter plate, see <u>Table 22.6</u>

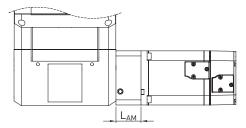


Fig. 22.7 Motor connection of linear table HT-B without gearbox

L_{AM} Length of motor adapter plate, see <u>Table 22.7</u>

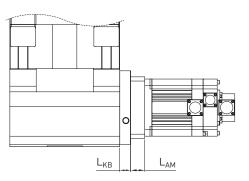
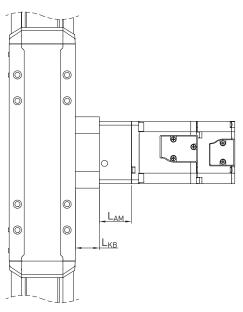



Fig. 22.8 Motor connection of bridge axis HB-B without gearbox

 $\begin{array}{ll} L_{KB} & \text{Length of coupling housing, see } \underline{\text{Table 22.5}} \\ L_{AM} & \text{Length of motor adapter plate, see } \underline{\text{Table 22.6}} \end{array}$

 $\label{eq:Fig. 22.9} \textbf{ Motor connection of cantilever axis HC without gearbox}$

 L_{KB} Length of coupling housing, see <u>Table 22.5</u> L_{AM} Length of motor adapter plate, see <u>Table 22.6</u>

Linear axis with gearbox

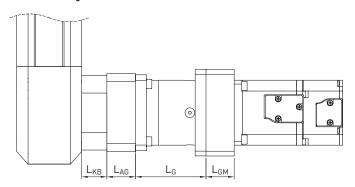


Fig. 22.10 Motor connection of linear module HM-B with gearbox

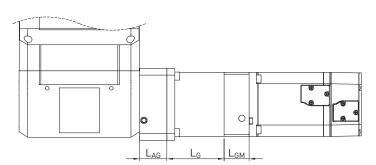


Fig. 22.11 Motor connection of linear table HT-B with gearbox

 L_{AG} $\,$ Length of gearbox adapter plate, see $\underline{\text{Table 22.9}}$

 L_{6} Length of gearbox, see <u>Table 22.11</u>

 $L_{GM}\;\;$ Length of motor gearbox adapter plate, see $\underline{Table\;22.10}$

Drive adaptation

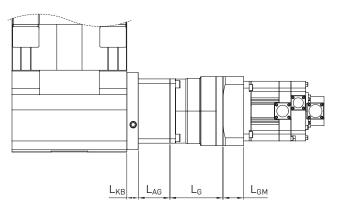


Fig. 22.12 Motor connection of bridge axis HB-B with gearbox

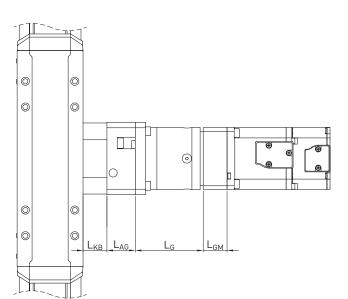


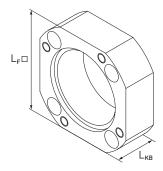
Fig. 22.13 Motor connection of cantilever axis HC with gearbox

 L_{KB} Length of coupling housing, see <u>Table 22.5</u>

 L_{AG} Length of gearbox adapter plate, see <u>Table 22.9</u>

 $\begin{array}{cc} L_G & \text{Length of gearbox, see } \overline{\text{Lable 22.11}} \\ L_{GM} & \text{Length of motor gearbox adapter plate, see} \; \underline{\text{Lable 22.10}} \end{array}$

 L_{KB} $\,$ Length of coupling housing, see $\underline{\text{Table 22.5}}$


L_{AG} Length of gearbox adapter plate, see <u>Table 22.9</u>

 L_{G} Length of gearbox, see <u>Table 22.11</u>

 L_{GM} Length of motor gearbox adapter plate, see $\underline{\text{Table } 22.10}$

22.1.5.1 Coupling housing KB for linear modules HM-B and cantilever axes HC

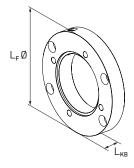


Fig. 22.14 Coupling housing KB for linear modules HM-B and cantilever axes HC Fig. 22.15 Coupling housing KB for bridge axes HB-B

Table 22.5 Dimensions of coupling housing KB for linear modules HM-B and cantilever axes HC											
Coupling housing for	L _F [mm]	L _{KB} [mm]	Article number								
HC025B	50.0	17.0	25-002045								
HM040B, HC040B	47.0	14.7	25-000798								
HM060B, HC060B	69.0	23.2	25-000799								
HM080B, HC080B	84.0	24.1	25-000800								
HM120B	118.0	25.0	25-000801								
HC100B	107.0	25.0	80043137								
HM120B-H	140.0	57.7	80095835								
HB250B	167.5	25.0	80073546								

22.1.5.2 Motor adapter plate AM for linear modules HM-B, linear tables HT-B and cantilever axes HC without gearbox

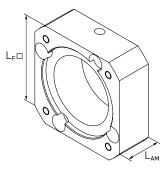


Fig. 22.16 Motor adapter plate AM for linear modules HM-B, linear tables HT-B and cantilever axes HC without gearbox

Table 22.6 Motor adapter plate AM for linear modules HM-B without gearbox											
Linear axis	Manufacturer	Motors	L _F [mm]	L _{AM} [mm]	Article number						
HM040B	HIWIN	EM1-C-M-20-2, EM1-C-M-40-2	60	30.5	25-000404						
HM060B	HIWIN	EM1-C-M-75-2	80	37	25-000421						
HM060B	HIWIN	EM1-A-M-1K-2, EM1-D-M-1A-2, EM1-D-M-2K-2	130	52	25-001791						
HM080B	HIWIN	EM1-A-M-1K-2, EM1-D-M-1A-2, EM1-D-M-2K-2	130	51.5	25-000450						
HM120B	HIWIN	EM1-D-M-2K-2	130	50.7	25-000647						

Table 22.7 Mot	Table 22.7 Motor adapter plate AM for linear tables HT-B without gearbox									
Linear axis	Manufacturer	cturer Motors L _F [mm] L _{AM} [mm] Article n								
HT100B	HIWIN	EM1-C-M-40-2	60	30.5	25-000404					
HT150B	HIWIN	EM1-A-M-1K-2, EM1-D-M-1A-2, EM1-D-M-2K-2	130	51.5	25-000450					
HT200B	HIWIN	EM1-A-M-1K-2, EM1-D-M-1A-2, EM1-D-M-2K-2	130	50.7	25-000647					
HT250B	HIWIN	EM1-D-M-2K-2	130	50.7	25-000647					

Drive adaptation

Table 22.8 Mo	Table 22.8 Motor adapter plate AM for cantilever axes HC-B without gearbox										
Linear axis	Manufacturer	Motors	L_{F} [mm] L_{AM} [mm]								
HC025B	HIWIN	EM1-C-M-10-2	50	27.3	25-002722						
HC025B	HIWIN	EM1-C-M-20-2, EM1-C-M-40-2	60	32.3	80094829						
HC040B	HIWIN	EM1-C-M-40-2	60	30.5	25-000404						
HC060B	HIWIN	EM1-A-M-1K-2, EM1-D-M-1A-2, EM1-D-M-2K-2	130	52	25-001791						
HC080B	HIWIN	EM1-A-M-1K-2, EM1-D-M-1A-2, EM1-D-M-2K-2	130	51.5	25-000450						

22.1.5.3 Gearbox adapter plate AG for linear modules HM-B, linear tables HT-B and cantilever axes HC $\,$

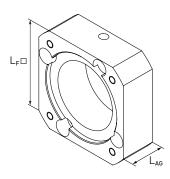


Fig. 22.17 Gearbox adapter plate AG for linear modules HM-B, linear tables HT-B and cantilever axes HC

Table 22.9 Gearbox adapter plate AG f	or linear modules HM-B, linear t	ables HT-B, cantilever axes HC a	and bridge axes HB-B	
Linear axis	Gearbox ²⁾	L _F [mm]	L _{AG} [mm]	Article number
HC025B	PLE040	50	27.0	25-002609 ¹⁾
HM040B, HT100B, HC040B	PLE040	50	23.0	25-000735 ¹⁾
HM040B, HT100B, HC040B	PLQE060	70	32.8	25-000387
HM060B, HC060B	PLQE060	70	27.5	25-000388
HM060B, HC060B	PLQE080	90	37.0	25-000389
HM080B, HT150B, HC080B	PLQE080	90	35.0	25-000390
HM080B, HT150B, HC080B	PLQE120	115	47.5	25-000391
HM120B, HT200B, HT250B, HC100B	PLQE120	115	43.6	25-000392
HM120B, HT200B, HT250B, HC100B	PLQE080	90	33.6	25-002638
HC150B	PLQE120	115	49.5	80077882
HM120B-H, HB250B	PSBN142	140	69.0	80077311
HM120B-H, HB250B	PLQE120	140	28.0	80096578

¹⁾ Adapter consists of two parts

 $^{^{\}rm 2)}$ PLE, PLQE and PSBN are registered trademarks of Neugart GmbH

22.1.5.4 Motor gearbox adapter plate GM for linear modules HM-B, linear tables HT-B and cantilever axes HC $\,$

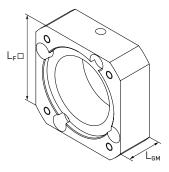


Fig. 22.18 Motor gearbox adapter plate GM for linear modules HM-B, linear tables HT-B and cantilever axes HC $\,$

Table 22.10 M	Table 22.10 Motor gearbox adapter plate GM for linear modules HM-B, linear tables HT-B and cantilever axes HC									
Gearbox	Manufacturer	Motors	L _F [mm]	L _{GM} [mm]	Article number					
PLE040	HIWIN	EM1-C-M-05-2, EM1-C-M-10-2	40	19.0	25-002320					
PLQE060	HIWIN	EM1-C-M-05-2, EM1-C-M-10-2	60	18.1	25-002298					
PLQE060	HIWIN	EM1-C-M-20-2, EM1-C-M-40-2	60	23.1	25-000486					
PLQE080	HIWIN	EM1-C-M-20-2, EM1-C-M-40-2	80	21.2	25-000494					
PLQE080	HIWIN	EM1-C-M-75-2	80	31.2	25-000495					
PLQE120	HIWIN	EM1-A-M-1K-2, EM1-D-M-1A-2, EM1-D-M-2K-2	130	36.8	25-000690					
PSBN142	HIWIN	EM1-A-M-1K-2, EM1-D-M-1A-2, EM1-D-M-2K-2	150	45.0	80097837					

PLE and PLQE are registered trademarks of Neugart GmbH

Drive adaptation

22.1.5.5 Gearboxes for linear modules HM-B, linear tables HT-B, cantilever axes HC and double axes HD

Gearbox 1) for optimal power transmission of the motor to the toothed belt drive.

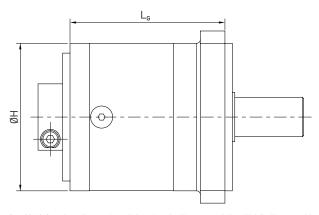


Fig. 22.19 Gearbox dimensioned drawing for linear modules HM-B, linear tables HT-B, cantilever axes HC and double axes HD $\,$

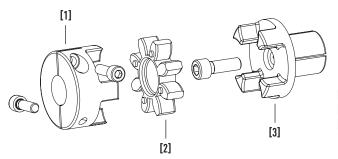
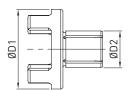
Linear axis	Ratio i	Ø H [mm]	L _G [mm]	Max. Ø motor shaft [mm] 3)	Gearbox ¹⁾	Order code for position gearbox 23
HM040B, HT100B,	3	40	48,5	9 (11)	PLE040-3	G0403
HC025B, HC040B	5	40	48,5	9 (11)	PLE040-5	G0405
	8	40	48,5	9 (11)	PLE040-8	G0408
	12	40	61,5	9 (11)	PLE040-12	G0412
HM040B, HM060B,	3	60	63,0	14 (19)	PLQE060-3	G0603
HT100B, HC040B,	5	60	63,0	14 (19)	PLQE060-5	G0605
HC060B	8	60	63,0	14 (19)	PLQE060-8	G0608
	12	60	75,5	14 (19)	PLQE060-12	G0612
HM060B, HM080B,	3	80	83,5	19 (24)	PLQE080-3	G0803
HT150B, HT200B,	5	80	83,5	19 (24)	PLQE080-5	G0805
HT250B, HC060B, HC080B, HC100B	8	80	83,5	19 (24)	PLQE080-8	G0808
	12	80	101,0	19 (24)	PLQE080-12	G0812
HM080B, HM120B,	3	115	124,5	24 (35)	PLQE120-3	G1203
HM120B-H, HT150B,	5	115	124,5	24 (35)	PLQE120-5	G1205
HT200B, HT250B, HC080B. HC100B.	8	115	124,5	24 (35)	PLQE120-8	G1208
HC150B, HB250B	12	115	152,5	24 (35)	PLQE120-12	G1212
HM120B-H, HB250B	3	150	115,5	35 (42)	PSBN142-3	G1403
	5	150	115,5	35 (42)	PSBN142-5	G1405
	8	150	115,5	35 (42)	PSBN142-8	G1408
	12	150	158,0	35	PSBN142-12	G1412

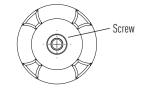
¹⁾ PLE, PLQE und PSBN are registered trademarks of Neugart GmbH

^{2]} See order code Page 25 for linear modules HM-B, Page 45 linear tables HT-B, Page 87 cantilever axes HC and Page 105 double axes HD

³⁾ Values in brackets possible on request.

22.1.5.6 Coupling component for linear modules HM-B, linear tables HT-B, bridge axes HB-B and cantilever axes HC


Fig. 22.20 Coupling component for linear modules HM-B, linear tables HT-B, bridge axes HB-B and cantilever axes HC

- [1] Clamping hub for motor side
- [2] Sprocket
- [3] Expansion hub for axis side

Expansion hub

Coupling element for the axis side.

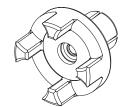
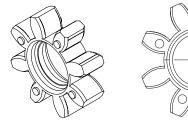
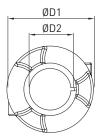
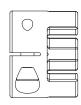


Fig. 22.21 Expansion hub for linear modules HM-B, linear tables HT-B and cantilever axes HC

Table 22.12 Article numbers	Table 22.12 Article numbers and dimensions of expansion hub									
Linear axis	Model	Ø D1 [mm]	Ø D2 [mm]	Thread size × length	Screw tightening torque [Nm]	Moment of inertia [kgmm²]	Frictional torque [Nm]	Article number		
HC025B	Size 12	24.5	10	M4×14	4	2.9	11	25-002015		
HM040B, HT100B, HC040B	Size 14	29.5	14	M5 × 18	10	4.4	31	25-002714		
HM060B, HC060B	Size 19	40	20	M6 × 20	10	9.0	38	25-000199		
HM080B, HT150B, HC080B	Size 24	55	25	M8 × 30	25	35.6	91	25-000200		
HM120B, HT200B, HT250B, HC100B, HC150B	Size 28	65	35	M10 × 35	49	77.0	201	25-000201		
HM120B-H	Size 38	80	35	M12 × 40	86	237,4	302	80092737		
HB250B	Size 38	80	40	M12 × 40	95	264,8	374	80073105		

Sprocket


Fig. 22.22 Sprocket for linear modules HM-B, linear tables HT-B and cantilever axes HC $\,$

Drive adaptation

Table 22.13 Sprocket article	Table 22.13 Sprocket article number								
Linear axis	Model	Article number							
HC025B	Size 12	25-002709							
HM040B, HT100B, HC040B	Size 14	25-002710							
HM060B, HC060B	Size 19	25-002711							
HM080B, HT150B, HC080B	Size 24	25-002712							
HM120B, HT200B, HT250B, HC100B, HC150B	Size 28	25-002713							
HM120B-H, HB250B	Size 38	80073071							

Clamping hubCoupling element for the motor side.

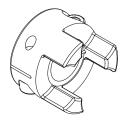


Fig. 22.23 Clamping hub for linear modules HM-B, linear tables HT-B and cantilever axes HC

Linear axis	Model	Ø D1 [mm]	Ø D2 H7 [mm]	Thread size × length	Screw tightening torque [Nm]	Frictional torque [Nm]	Moment of inertia [kgmm²]	Article number
HC025B	Size 12	24.5	5	M3 × 12	2.1	5.2	1.46	25-002382
			6			6.1	1.46	25-002384
			6.35			6.4	1.46	25-002385
			8			8.1	1.45	25-002386
			9			9.1	1.45	25-002387
			10			10.1	1.44	25-002388
			11			11.1	1.43	25-002389
			12			12.1	1.41	25-002390
			14			14.1	1.41	25-002391
1M040B,	Size 14	29.5	5	M4 × 12	5.0	10.1	2.70	25-002392
HT100B, HC040B			6			12.2	2.69	25-002393
			6.35			13.2	2.69	25-002394
			8			16.5	2.68	25-002395
			9			18.6	2.68	25-002396
			10			20.8	2.67	25-002397
			11			23.0	2.66	25-002398
			12			25.1	2.65	25-002399
			13			27.2	2.63	25-002400
			14			29.4	2.61	25-002401
			16		4.0	28.0	6.11	25-002610
1M060B,	Size 19	39.5	6.35	M6 × 16	14.0	25.8	15.26	25-002403
IC060B			8			32.5	15.25	25-002404
			9			36.5	15.24	25-002405
			10			40.6	15.23	25-002406
			11			44.6	15.21	25-002407
			12			48.7	15.18	25-002408

Linear axis	Model	Ø D1 [mm]	Ø D2 H7 [mm]	Thread size × length	Screw tightening torque [Nm]	Frictional torque [Nm]	Moment of inertia [kgmm²]	Article number
HM060B,	Size 19	39.5	14	M6 × 16	14.0	56.8	15.11	25-002409
HC060B			16			64.9	14.99	25-002410
			18			73.1	14.82	25-002411
			19			77.1	14.71	25-002412
			20			81.2	14.58	25-002413
			22	M5 × 16	10.0	71.5	13.95	25-002414
			24			75.6	13.52	25-002415
HM080B,	Size 24	54.5	10	M6 × 20	15.0	41.0	53.30	80020239
HT150B,			11			46.0	53.30	25-002456
HC080B			14			58.0	53.20	25-002416
			16			66.0	53.10	25-002417
			19			78.0	52.80	25-002418
			20			82.0	52.70	25-002419
			22			90.0	52.30	25-002420
			24			98.0	51.90	25-002422
			25			102.0	51.60	25-002423
			28			114.0	50.50	25-002424
			32			130.0	48.50	25-002425
HM120B,	Size 28 64.5 16 M8	M8 × 25	35.0	130.0	125.45	25-002426		
HT200B,			19			152.5	125.11	25-002427
HT250B, HC100B,			20			160.0	124.95	25-002428
HC150B,			22			175.0	124.55	25-002429
			24			190.0	124.02	25-002430
			25			197.5	123.70	25-002431
			28			220.0	122.47	25-002432
			30			235.0	121.42	80108094
			32			240.0	120.08	25-002433
			35			262.5	117.59	25-002434
			38			285.0	118.33	25-002435
НМ120В-Н,	Size 38	80	19	M10 × 30	49.0	188.0	357.59	80109074
HB250B			22			217.0	357.46	80075344
			24			237.0	356.28	80075357
			25			247.0	359.43	80109084
			28			277.0	354.42	80075365
			30			296.0	353.12	80114285
			32			316.0	351.54	80075376
			35			346.0	349.08	80075389
			38			375.0	344.63	80075396
			40			395.0	341.05	80073112
			42			415.0	337.76	80075401

Drive adaptation

22.2 Drive adaptation of linear modules HM-S and linear tables HT-S

22.2.1 Motor adaptation of linear modules HM-S and linear tables HT-S

The drive adaptation of linear modules HM-S and linear tables HT-S is designed in two parts to ensure easy flange-mounting of all common motors.

The flange type set comprises the following components:

- Coupling housing KB
- Coupling components
- Motor adapter plate AM or belt drive RT

The dimensions of the coupling housing and motor adapter plate for HIWIN motors can be found in section 22.2.2 from page 176. Adaptations for motors from other manufacturers can be found in the configurator at hiwin.de.

Motor adaptation of linear modules with ball screw - without belt drive

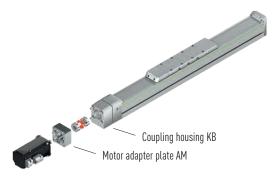


Fig. 22.24 Motor adaptation of linear modules HM-S

Motor adapter plate AM:

Adapter from axis to motor

Motor adaptation of linear tables with ballscrew (HT-S)

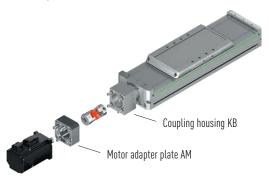


Fig. 22.25 Motor adaptation of linear tables HT-S

Motor adapter plate AM:

Adapter from axis to motor

Motor adaptation of linear tables with ballscrew - with belt drive

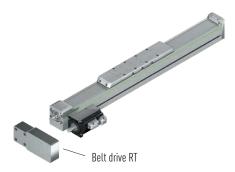
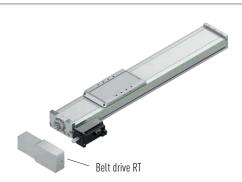



Fig. 22.26 Motor adaptation of linear modules HM-S with belt drive

Belt drive RT:

For deflecting the drive 180°

Belt drive RT:

For deflecting the drive 180°

Fig. 22.27 Motor adaptation of linear tables HT-S with belt drive

Drive	e	Linear module	HM-S			Linear table H1	Linear table HT-S				
Manufacturer/Type		HM040S	HM060S		HM120S	HT100S	HT150S Motor only	HT200S Motor only	HT250S Motor only		
		Motor only	Motor only		Motor only	Motor only					
	EM1-C-M-05-2	HW22 ¹⁾	HW16 ¹⁾								
ĺ	EM1-C-M-10-2	HW22 ¹⁾	HW16 ¹⁾			HW16 ¹⁾					
	EM1-C-M-20-2	HW21 ¹⁾	HW03 ¹⁾	HW05 ¹⁾		HW03 ¹⁾	HW05 ¹⁾				
<u> </u>	EM1-C-M-40-2		HW03 ¹⁾	HW05 ¹⁾		HW03 ¹⁾	HW05 ¹⁾	HW05 ¹⁾			
N N	EM1-C-M-75-2			HW06 ¹⁾	HW08 ¹⁾		HW06 ¹⁾	HW06 ¹⁾	HW08 ¹⁾		
	EM1-A-M-1K-2				HW13 ²⁾			HW25	HW13 ²⁾		
	EM1-D-M-1A-2				HW13 ²⁾				HW13 ²⁾		
	EM1-D-M-2K-2								HW13 ²⁾		

 $^{^{1)}}$ Possible belt drive V_1

 $^{^{2)}}$ Possible belt drive $V_{2}^{^{\prime}}$

 $^{^{3)}}$ See order codes $\underline{\text{Page }35}$ for linear modules HM-S and $\underline{\text{Page }55}$ linear tables HT-S

Drive adaptation

22.2.2 Dimensions of motor adaptation of linear modules HM-S, linear tables HT-S $\,$

The total length of the spindle axis depends on the following factors:

- Adaptation material (coupling housing KB, motor adapter plate AM)
- Belt drive RT
- Motor

Linear axis without belt drive

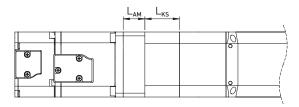


Fig. 22.28 Motor connection of linear modules HM-S without belt drive

 L_{KS} Length of coupling housing, see <u>Table 22.16</u> L_{AM} Length of motor adapter plate, see <u>Table 22.17</u>

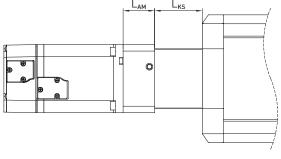


Fig. 22.29 Motor connection of linear table HT-S without belt drive

 L_{KS} Length of coupling housing, see <u>Table 22.16</u> L_{AM} Length of motor adapter plate, see <u>Table 22.17</u>

Linear axis with belt drive

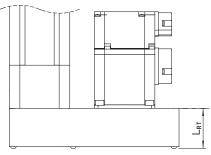


Fig. 22.30 Motor connection of linear modules HM-S with belt drive

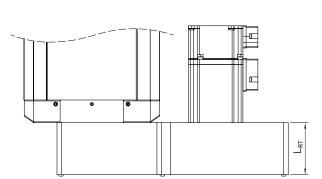


Fig. 22.31 Motor connection of linear tables HT-S with belt drive

 L_{RT} Length of belt drive, see <u>Table 22.19</u>

 L_{RT} Length of belt drive, see <u>Table 22.19</u>

22.2.2.1 Coupling housing KS for linear modules HM-S and linear tables HT-S $\,$

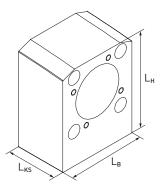
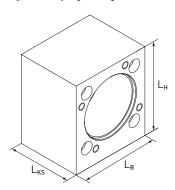



Fig. 22.32 Coupling housing KS for linear modules $\mbox{HM-S}$

 $\label{eq:Fig. 22.33} \textbf{ Coupling housing KS for linear tables HT-S}$

Table 22.16 Dimensions of c	oupling housing KS for li	near modules HM-S and linear ta	bles HT-S	
Coupling housing for	L _B [mm]	L _H [mm]	L _{KS} [mm]	Article number
HM040S	39.6	57.6	34	25-000305
HM060S	59.6	75.0	32	25-000306
HM080S	79.6	95.5	41	25-000307
HM120S	119.6	141.9	50	25-000308
HT100S	55.0	58.2	39	25-000952
HT150S	70.0	78.5	56	25-000951
HT200S	75.0	90.0	59	25-000950
HT250S	90.0	99.5	68	25-000949

22.2.2.2 Motor adapter plate AM for linear modules HM-S and linear tables HT-S $\,$

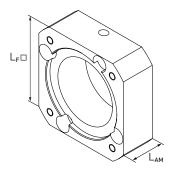


Fig. 22.34 Motor adapter plate AM for linear modules HM-S and linear tables HT-S

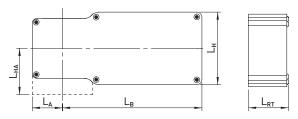

Drive adaptation

Table 22.17 Motor adapter plate AM for linear modules HM-S								
Linear axis	Manufacturer	Motors	L _F [mm]	L _{AM} [mm]	Article number			
HM040S	HIWIN	EM1-C-M-05-2, EM1-C-M-10-2	42	22,5	25-002721			
		EM1-C-M-20-2	60	27,5	25-002871			
HM060S	HIWIN	EM1-C-M-05-2, EM1-C-M-10-2	50	25,5	25-002736			
		EM1-C-M-20-2, EM1-C-M-40-2	60	30,5	25-000404			
HM080S	HIWIN	EM1-C-M-20-2, EM1-C-M-40-2	72	27	25-000414			
		EM1-C-M-75-2	80	37	25-000421			
HM120S	HIWIN	EM1-C-M-75-2	80	36,5	25-000438			
		EM1-A-M-1K-2, EM1-D-M-1A-2	130	51,5	25-000450			

Table 22.18 Motor adapter plate AM for linear tables HT-S									
Linear axis	Manufacturer	Motors	L _F [mm]	L _{AM} [mm]	Article number				
HT100S	HIWIN	EM1-C-M-10-2	50	25,5	25-002736				
		EM1-C-M-20-2, EM1-C-M-40-2	60	30,5	25-000404				
HT150S	HIWIN	EM1-C-M-20-2	72	27	25-000414				
HT200S	HIWIN	EM1-A-M-1K-2	130	52	25-001791				
HT250S	HIWIN	EM1-C-M-75-2	80	36,5	25-000438				
		EM1-A-M-1K-2, EM1-D-M-1A-2, EM1-D-M-2K-2	130	51,5	25-000450				

22.2.2.3 Belt drive RT for linear modules HM-S and linear tables HT-S

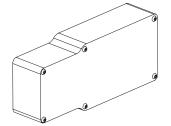


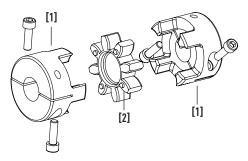
Fig. 22.35 Belt drive for linear modules HM-S and linear tables HT-S $\,$

Table 22.19 Spe	Table 22.19 Specifications of belt drive						
Linear axis	Type 1)	L _H	L _B	L _{RT}	L _A	L _{HA}	Translation
HM040S	V ₁	72	138.5	40	30.0	36.25	1
HM060S	V ₁	72	138.5	40	30.0	45.80	1
	V ₂	102	171.5	40	30.0	45.80	1
HM080S	V ₁	102	197.0	51	39.0	61.40	1
	V ₂	131	226.0	61	39.0	61.40	1
HM120S	V ₁	135	248.5	63	55.0	89.00	1
	V ₂	175	288.0	73	55.0	89.00	1
HT100S	V ₁	74	157.0	43	29.5	31.00	1
	V ₂	102	196.0	43	29.5	31.00	1
HT150S	V ₁	102	217.0	60	38.5	43.00	1
	V ₂	131	251.0	70	38.5	43.00	1
HT200S	V ₁	100	237.0	61	42.5	51.00	1
	V ₂	131	268.5	71	42.5	51.00	1
HT250S	V ₁	135	298.0	73	50.7	52.00	1
	V ₂	175	349.5	83	50.7	52.00	1

 $^{^{1)}\,\}mbox{You}$ can find the required type in Table 22.15

Note: Please note that the belt drive hangs over the lower edge of the axis if the following applies:

$$\frac{L_{H}}{2} > L_{HA}$$

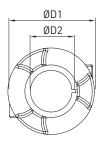

Drive adaptation

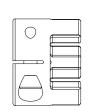
Note: Please note that the belt drive can protrude over the side of the axis if the following applies:

 $L_A > \frac{L_B}{2}$

L_B Axis profile width

22.2.2.4 Coupling component for linear modules HM-S and linear tables HT-S

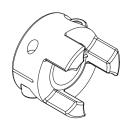

 $\label{fig:component} \textbf{Fig. 22.36 Coupling component for linear modules HM-S, linear tables HT-S}$

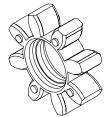

[1] Clamping hubs (1 for axis side, 1 for motor side)

[2] Sprocket

Clamping hub

Coupling element on motor and axis side.




Fig. 22.37 Clamping hub

Linear axis	Model	Ø D1 [mm]	Ø D2 H7 [mm]	Thread size × length	Screw tightening torque [Nm]	Frictional torque [Nm]	Moment of inertia [kgmm²]	Article number
HM040S	Size 12	24.5	5	M3 × 12	2.1	5.2	1.46	25-002382
			6			6.1	1.46	25-002384
			6.35			6.4	1.46	25-002385
			8			8.1	1.45	25-002386
			9			9.1	1.45	25-002387
			10			10.1	1.44	25-002388
			11			11.1	1.43	25-002389
			12			12.1	1.41	25-002390
			14			14.1	1.41	25-002391
HM060S, HT100S	Size 14	29.5	5	M4 × 12	5.0	10.1	2.70	25-002392
			6			12.2	2.69	25-002393
			6.35			13.2	2.69	25-002394
			8			16.5	2.68	25-002395
			9			18.6	2.68	25-002396
			10			20.8	2.67	25-002397
			11			23.0	2.66	25-002398
			12			25.1	2.65	25-002399
			13			27.2	2.63	25-002400
			14			29.4	2.61	25-002401
			16		4.0	28.0	6.11	25-002610

Linear axis	Model	Ø D1 [mm]	Ø D2 H7 [mm]	Thread size × length	Screw tightening torque [Nm]	Frictional torque [Nm]	Moment of inertia [kgmm²]	Article number
HM080S,	Size 19	39.5	6.35	M6 × 12	14.0	25.8	15.26	25-002403
HT150S,			8			32.5	15.25	25-002404
HT200S			9			36.5	15.24	25-002405
10 11 12 14			10			40.6	15.23	25-002406
			11			44.6	15.21	25-002407
		12			48.7	15.18	25-002408	
			56.8	15.11	25-002409			
	16 18			64.9	14.99	25-002410		
				73.1	14.82	25-002411		
			19			77.1	14.71	25-002412
			20			81.2	14.58	25-002413
			22	M5 × 16	10.0	71.5	13.95	25-002414
			24			75.6	13.52	25-002415
IM120S,	Size 24	54.5	11	M6 × 20	15.0	46.0	53.30	25-002456
IT250S			14			58.0	53.20	25-002416
			16			66.0	53.10	25-002417
			19			78.0	52.80	25-002418
			20			82.0	52.70	25-002419
			22			90.0	52.30	25-002420
			24			98.0	51.90	25-002422
	25			102.0	51.60	25-002423		
			28			114.0	50.50	25-002424
			32			130.0	48.50	25-002425

Sprocket

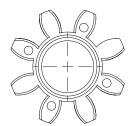


Fig. 22.38 Sprocket

Table 22.21 Sprocket article	Table 22.21 Sprocket article number							
Linear axis	Model	Article number						
HM040S	Size 12	25-000202						
HM060S, HT100S	Size 14	25-000203						
HM080S, HT150S, HT200S	Size 19	25-000204						
HM120S, HT250S	Size 24	25-000205						

Drive adaptation

22.2.3 Drive adaptation of bridge axes HB-R

The drive adaptation of the HB-R bridge axis consists of a GM motor gear adapter plate to ensure that all standard motors can be easily flange-mounted. The dimensions of the motor gearbox adapter plate for HIWIN motors can be found in section 22.1.5 from page 164. Adaptations for motors from other manufacturers can be found in the configurator at hiwin.de.

Motor adaptation of bridge axes with rack and pinion drive (HB-R)

Motor gear adapter plate GM: Adapter from gearbox to motor

Fig. 22.39 Motor adaptation of bridge axes HB-R

Table	Table 22.22 Order code for position flange type 1) – Bridge axes HB-R					
Drive		HB250R				
Manı	ıfacturer/Type	With NPR035-H				
Gear	box adapter					
_	EM1-A-M-1K-2	HW28 ²)				
HIWIN	EM1-D-M-1A-2	HW28 ²)				
	EM1-D-M-2K-2	HW28 ²]				

NPR is a registered trademark of Wittenstein SE

¹⁾ See order code <u>Page 87</u>

²⁾ Drive not suitable for Y-axis of HIWIN multi-axis systems HS

22.2.4 Drive adaptation of cantilever axes HC-R

The adaptation to the linear axis consists of a GM motor gear adapter plate to ensure that all standard motors can be easily flange-mounted.

The dimensions of the motor gearbox adapter plate for HIWIN motors can be found in section <u>22.1.5 from page 164</u>. Adaptations for motors from other manufacturers can be found in the configurator at hiwin.de.

Motor adaptation of cantilever axes ack and pinion drive (HC-R)

Motor gear adapter plate GM: Adapter from gearbox to motor

Fig. 22.40 Motor adaption of cantilever axes HC-R

Table	Table 22.23 Order code for position flange type 1) – Cantilever axes HC-R						
Drive		HC150R					
Manı	ufacturer/Type	With NPR035-H					
Gear	box adapter						
_	EM1-A-M-1K-2	HW28 ²)					
HIWIN	EM1-D-M-1A-2	HW28 ²)					
_	EM1-D-M-2K-2	HW28 ²)					

NPR is a registered trademark of Wittenstein SE

¹⁾ See order code Page 87

²⁾ Drive not suitable for Y-axis of HIWIN multi-axis systems HS

Drive adaptation

22.2.5 Dimensions of the motorised adaptation of the bridge axes HB-R and cantilever axles HC-R $\,$

The total height of the linear axes with rack and pinion drive depends on the following factors:

- Gearbox
- Motor gearbox adapter plate GM
- Motor

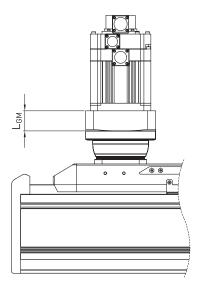


Fig. 22.41 Motor connection of linear module HM-B without gearbox

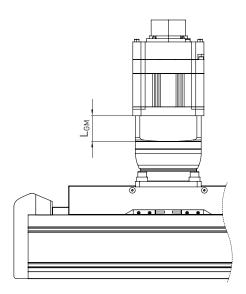


Fig. 22.42 Motor connection of linear table HT-B without gearbox

 L_{GM} Length of motor gearbox adapter plate, see $\underline{\text{Table 22.10}}$

 L_{GM} $\,$ Length of motor gearbox adapter plate, see $\underline{\text{Table 22.10}}$

22.2.6 Motor gearbox adapter plate GM for bridge axes HB-R and cantilever axes HC-R

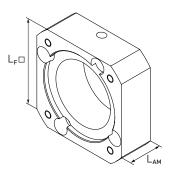


Fig. 22.43 Motor gearbox adapter plate GM for bridge axes HB-R and cantilever axes HC-R $\,$

Table 22.24 M c	otor gearbox ada	apter plate GM for bridge axes HB-R and cantilever axes HC-R			
Gearbox	Manufacturer	Motors	L _F [mm]	L _{AM} [mm]	Item number
NPR035-H	HIWIN	EM1-A-M-1K-2, EM1-D-M-1A-2, EM1-D-M-2K-2	120	47,0	80098354

22.2.7 Gearbox for bridge axes HB-R and cantilever axes HC-R

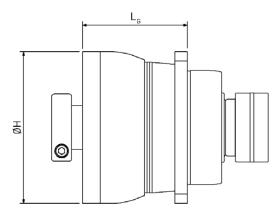


Fig. 22.44 Gearbox for bridge axes HB-R and cantilever axes HC-R $\,$

Table 22.25 Ge	Table 22.25 Gearbox for cantilever axes HC-R and bridge axes HB-R									
Linear axis	Transmission i	ØН	L _G [mm]	Max. Ø motor shaft [mm]	Gearbox 1)	Order code for gearbox position 2)				
HC150R,	3	120	83,1	28	NP035-H-3	G3503				
HB250R	5	120	83,1	28	NP035-H-5	G3505				
	7	120	83,1	28	NP035-H-7	G3507				
	10	120	83,1	28	NP035-H-10	G3510				
	3	150	89,1	38	NP035-K-3	G3503				
	5	150	89,1	38	NP035-K-5	G3505				
	7	150	89,1	38	NP035-K-7	G3507				
	10	150	89,1	38	NP035-K-10	G3510				

¹⁾ NPR is a registered trademark of Wittenstein SE

²⁾ See order code Page 79 for bridge axes HB-R and Page 101 for cantilever HC-R

Drive adaptation

22.3 Energy supply for linear axes HT-B, HB-B, HT-S and HB-R

For safe carrying of supply lines, linear axes Linearachsen HT-B, HB-B, HT-S and HB-R up to a maximum stroke of 5,000 mm $^{1)}$ are optionally supplied with generously dimensioned energy chains. They are extremely compact and save space when attached to the axis. The orientation of the energy chain can be selected according to the order codes in section 7.2 and section 8.2. The linear axes with energy chain are optimised for horizontal installation. Axes with energy chain for vertical use on request. The dimensions of the energy chain are listed in Fig. 22.45, Fig. 22.46 and Table 22.27.

 $^{^{1)}}$ For HT100B, the maximum stroke with energy chain is 4,000 mm

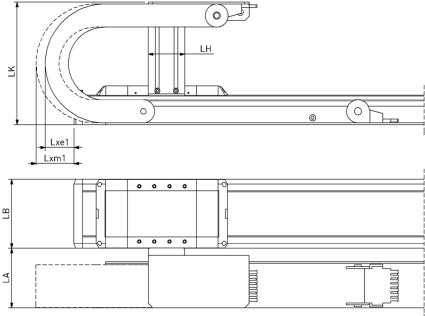


Fig. 22.45 Linear axes HT-B and HB-B: Option "E"

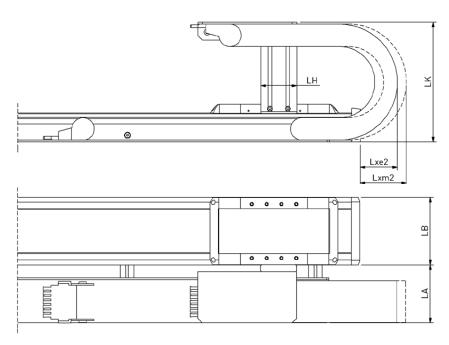


Fig. 22.46 Linear axes HT-B: Option "C" and "F"

Table 22.26 Dimensions of drive in	Table 22.26 Dimensions of drive interface with energy chain for linear axes HT-B and HB-B										
	Linear table -	- Variant withou	ut cover			Linear table -	- Variant with c	over			
	HT100B	HT150B	HT200B	HT250B	HB250B	HT100B	HT150B	HT200B	HT250B		
LB [mm]	100	150	200	250	250	100	150	200	250		
Inner cross section W × H [mm]	57 × 25	75 × 35	75 × 35	75 × 35	75 × 35	57 × 25	75 × 35	75 × 35	75 × 35		
Bending radius [mm]	75	100	100	100	100	75	100	100	100		
LK [mm]	198	266	266	266	299	198	266	266	266		
LA [mm]	100	129	129	129	139	100	129	129	129		
LH [mm]	60	80	80	80	80	60	80	80	80		
Lxe1 [mm] 1)	3)	3)	3)	3)	3)	3)	3)	3)	3)		
Lxe2 [mm] ¹⁾	3)	3)	3)	3)	3)	3)	3)	3)	3)		
Lxm1 [mm] ²⁾	15	3)	3)	3)	3)	3)	3)	3)	3)		
Lxm2 [mm] ²⁾	15	3)	3)	3)	3)	3)	3)	3)	3)		

¹⁾ At electrical zero

³⁾ Energy chain without overhang

Table 22.27 Dimensions of	f drive interface with energ	y chain for linear axes HT-S
----------------------------------	------------------------------	------------------------------

indicate 22.27 billions of differ interface with citeryy chain for the difference and fire									
	Linear table – V	Linear table – Variant without cover				Linear table – Variant with cover			
	HT100S	HT150S	HT200S	HT250S	HT100S	HT150S	HT200S	HT250S	
LB [mm]	100	150	200	250	100	150	200	250	
Inner cross section W × H [mm]	57 × 25	75 × 35	75 × 35	75 × 35	57 × 25	75 × 35	75 × 35	75 × 35	
Bending radius [mm]	75	100	100	100	75	100	100	100	
LK [mm]	198	266	266	266	198	266	266	266	
LA [mm]	100	129	129	129	100	129	129	129	
LH [mm]	60	80	80	80	60	80	80	80	
Lxe1 [mm] ¹⁾	3)	3)	3)	3)	3)	3)	3)	3)	
Lxe2 [mm] ¹⁾	35	3)	3)	3)	5	3)	3)	3)	
Lxm1 [mm] ²⁾	3)	3)	3)	3)	3)	3)	3)	3)	
Lxm2 [mm] ²⁾	45	15	3)	3)	15	3)	3)	3)	

¹⁾ At electrical zero

^{3]} Energy chain without overhang

Table 22.28 Dimensions of drive in	able 22.28 Dimensions of drive interface with energy chain for bridge axes HB250R						
	HB250R						
LB [mm]	250						
Inner cross section W × H [mm]	75 × 35						
Bending radius [mm]	100						
LK [mm]	299						
LA [mm]	139						
LH [mm]	80						
Lxe2 [mm] ¹⁾	3)						
Lxm2 [mm] ²⁾	3)						

¹⁾ At electrical zero

^{2]} At mechanical zero

²⁾ At mechanical zero

^{2]} At mechanical zero

³⁾ Energy chain without overhang

Drive adaptation

22.4 Connection interface and energy supply for linear motor axes $\operatorname{HT-L}$ and $\operatorname{HB-L}$

Linear motor axes HT-L and HB-L have an interface for motor and encoder cables. These are located on the side of the carriage and can be connected quickly and easily without tools. Depending on the installation situation and the desired cable routing, two different orientations of the connector are available, see Fig. 22.47 and Fig. 22.48. For safe carrying of the supply cables, linear motor axes HT100L and HT150L up to a maximum stroke of 4,000 mm and linear motor axes HT200L, HT250L and HB250L up to a maximum stroke of 5,000 mm are optionally supplied with generously dimensioned energy chains. They are extremely compact and save space when attached to the axis. The orientation of the energy chain depends on the selected connector orientation. Linear tables HT-L and HB-L with energy chain are optimised for horizontal installation. Axes with energy chain for vertical use on request.

Dimensions of the energy chain and the electrical interface are listed in <u>Fig. 22.47</u>, <u>Fig. 22.48</u> and <u>Table 22.29</u>.

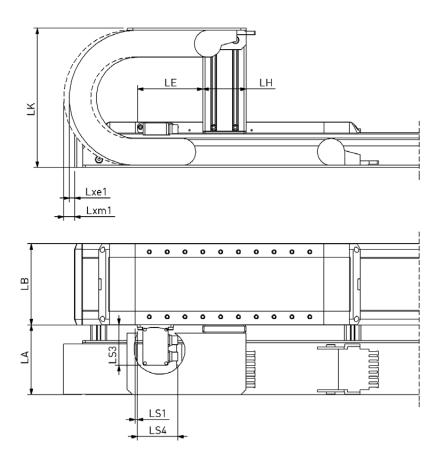


Fig. 22.47 Linear motor axes HT-L and HB-L: Option "D" and "F" – connector right/rear, also applies mirrored to option "C" and "E" – connector left/rear

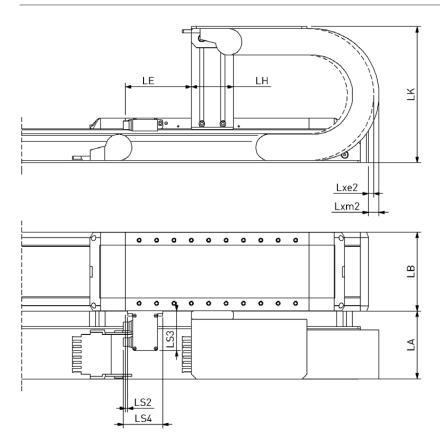


Fig. 22.48 Linear motor axes HT-L and HB-L: Option "R" and "B" – connector right/front, also applies mirrored to option "L" and "A" – connector left/front

Table 22.29 Dimensions of drive in	Table 22.29 Dimensions of drive interface and energy chain for linear motor axes HT-L and HB-L										
	Linear table	– Variant with	out cover			Linear tabl	Linear table – Variant with cover				
	HT100L	HT150L	HT200L	HT250L	HB250L	HT100L	HT150L	HT200L	HT250L		
LB [mm]	100	150	200	250	250	100	150	200	250		
Inner cross section W × H [mm]	57 × 25	77 × 25	75 × 35	75 × 35	75 × 35	57 × 25	77 × 25	75 × 35	75 × 35		
Bending radius [mm]	75	100	100	100	100	75	100	100	100		
LK [mm]	200	266	266	266	299	266	266	266	266		
LA [mm]	100	129	129	129	139	129	129	129	129		
LH [mm]	60	80	80	80	80	80	80	80	80		
LE [mm] ⁴⁾	117,5	125	120	135	387	117,5	125	120	135		
Lxe1 [mm] 1)4)	60	70	30	3)	_	10	20	3)	3)		
Lxe2 [mm] 1)4)	50	3)	3)	3)	10	3)	3)	3)	3)		
Lxm1 [mm] ²⁾⁴⁾	70	90	60	35	-	20	40	10	3)		
Lxm2 [mm] ^{2]4)}	60	3)	3)	3)	60	10	3)	3)	3)		
LS1 [mm]	11	15	17	25	_	11	15	17	25		
LS2 [mm]	0	4	6	14	0	0	4	6	14		
LS3 [mm]	75	84	84	84	84	84	84	84	84		
LS4 [mm]	78	92	92	92	115	92	92	92	92		

¹⁾ At electrical zero

^{2]} At mechanical zero

³⁾ Energy chain without overhang

⁴⁾ Not applicable for variant without energy chain

Accessories

23. Accessories

23.1 Clamping profiles

With the help of clamping profiles, the linear axis is attached to the machine frame from above. The clamping profiles can be swivelled laterally into the profile groove of the axis.

The required number of clamping profiles depends on the axis length and the load and can be found in the assembly instructions. Sets containing 4 clamping profiles are available.

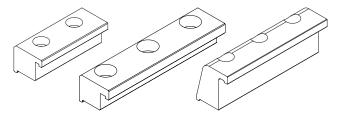
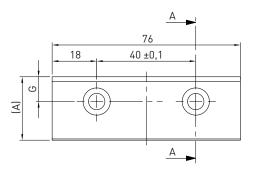



Fig. 23.1 Clamping profiles short and long

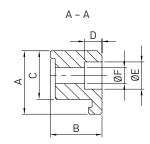
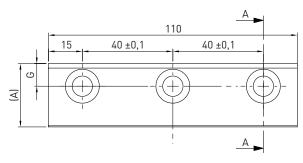



Fig. 23.2 Dimensioned drawing of clamping profile short

Table 23.1 Article nu	Table 23.1 Article numbers and dimensions of clamping profiles short										
Suitable for linear axis	Model	A	В	С	D	ØE	ØF	G	Matching screw	Article number, 4 pieces	
HM040/HT100	Size 5	18.0	10.5	14.1	6.0	10	5.5	6.85	DIN 912 M5	25-000517	
HM060	Size 6	25.6	20.9	19.6	9.5	11	6.6	10.00	DIN 912 M6	25-000518	
HT150	Size 6	26.1	15.9	19.6	8.5	11	6.6	10.00	DIN 912 M6	25-001023	
HM080 ¹⁾ /HM120/ HT200/HT250	Size 8	28.0	22.0	19.5	8.0	15	9.0	10.00	DIN 912 M8	25-000519	

¹⁾ Standard Unit: mm

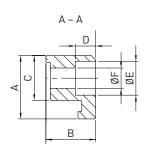
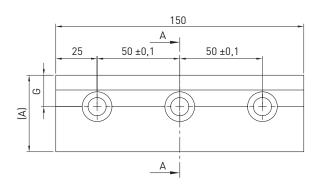



Fig. 23.3 Dimensioned drawing of clamping profile long

Table 23.2 Article numbers and dimensions of clamping profiles long										
Suitable for linear axis	Model	Α	В	С	D	ØE	ØF	G	Matching screw	Article number, 4 pieces
HM080/HM120 ¹⁾ / HT200 ¹⁾ /HT250 ¹⁾	Size 8	28.0	22.0	19.5	8.0	15.0	9.0	10.0	DIN 912 M8	25-000520

¹⁾ Standard unit: mm

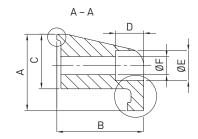


Fig. 23.4 Dimensioned drawing of clamping profile HB

Table 23.3 Article numbers and dimensions of clamping profiles HB										
Suitable for bridge axes	Model	A	В	С	D	ØE	ØF	G	Matching screw	Article number, 4 pieces
HB250	Size 10	46.3	52.2	33	17	18.0	11.0	19.0	DIN912 M10	80113432

unit: mm

Accessories

23.2 T nut

T nut for force-fit mounting of the linear axis. Flexible fastening option via the grooves on the side and underside of the axis profile. The required number of T nuts depends on the axis length and the load and can be found in the assembly instructions. Sets containing 10 T nuts are available.

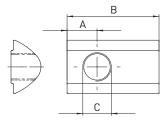


Fig. 23.5 Dimensioned drawing of T nut

Table 23.4 Article numbers and dimensions of T nut							
Suitable for linear axis	Model	Α	В	С	Article number, 10 pieces		
HM040, HT100	Size 5 M4	3.5	12.0	M4	20-000528		
HM040, HT100 ¹⁾	Size 5 M5	3.5	12.0	M5	20-000529		
HM060, HT150	Size 6 M5	4.5	17.0	M5	20-000530		
HM060, HT150 ¹⁾	Size 6 M6	5.5	17.0	M6	20-000531		
HM080, HM120, HT200, HT250	Size 8 M5	7.5	23.0	M5	20-000532		
HM080, HM120, HT200, HT250	Size 8 M6	6.5	23.0	M6	20-000533		
HM080, HM120, HT200, HT250 ¹⁾	Size 8 M8	7.5	23.0	M8	20-000534		
HB250	Size 10 M8	8.5	28.5	M8	80114686		
HB250 ¹⁾	Size 10 M10	8.5	28.5	M10	80114691		

¹⁾ Preferred type for axis mounting unit: mm

23.3 Centring sleeve

Centring sleeves for insertion into the mounting holes of the carriage for exact and reproducible load pick-up. Sets containing 10 centring sleeves are available.

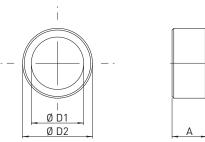


Fig. 23.6 Dimensioned drawing of centring sleeve

Table 23.5 Article numbers and dimensions of centring sleeve							
Suitable for linear axis	A	ØD1	Ø D2	Article number, 10 pieces			
HC025	4	4.5	6 h6	25-002195			
HM040, HM060, HT100, HT150, HC040, HC060	4	6.5	8 h6	25-000511			
HM080, HT200, HC080	4	9.0	12 h6	25-000512			
HM120, HT250, HC100B, HC150, HB250	4	11.0	15 h6	25-000513			
Unit: mm							

23.4 Groove cover

Groove cover for covering mounting groove. Length: $2\,\mathrm{m}.$ Sets of 5 groove covers are available.

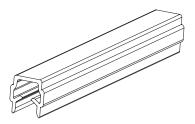


Fig. 23.7 Groove cover for linear axes HM/HT/HC

Table 23.6 Article numbers for groove covers							
Suitable for linear axis	Model	Article number, 5 pieces					
HM040, HT100, HC040, HC060	Size 5	25-000514					
HM060, HT150, HC080	Size 6	25-000515					
HM080, HM120, HT200, HT250, HC100B, HC150	Size 8	25-000516					
HB250	Size 10	80114653					

23.5 Limit switches

Inductive proximity switch, available in either a normally closed or a normally open version. By default, the limit switch is available with connector or open cable end. Set including mounting material.

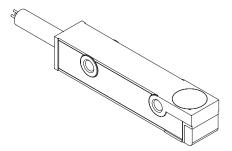


Fig. 23.8 Limit switch for linear axes HM/HT/HC

Table 23.7 Options for limit switch							
Suitable for linear axis	Option	Article number					
HM, HT, HC040B, HC060B, HC080B, HC100B, HC150	Limit switch with 100 mm cable, connector (normally open)	25-000786					
HM, HT, HC040B, HC060B, HC080B, HC100B, HC150	Limit switch with 100 mm cable, connector (normally closed)	25-002766					
HM, HT, HC040B, HC060B, HC080B, HC100B, HC150	Limit switch with 4 m cable (normally open)	25-000787					
HM, HT, HC040B, HC060B, HC080B, HC100B, HC150	Limit switch with 5 m cable (normally closed)	25-000788					
HC025B	Limit switch with 200 mm cable, connector (normally open)	25-002204					
HC025B	Limit switch with 2 m cable (normally open)	25-002205					
HB250	Limit switch with 100 mm cable, connector (normally open)	80073805					
HB250	Limit switch with 300 mm cable, connector (normally closed)	80073846					
HB250	Limit switch with 5 m cable (normally open)	80073857					
HB250	Limit switch with 5 m cable (normally closed)	80073860					

Accessories

23.6 Extension cable for limit switches

Cable with 3-pin M8 round connector on the limit switch side and open wires at the other end of the cable.

 $\label{eq:Fig. 23.9} \textbf{ Extension cable for limit switch}$

Table 23.8 Extension cable for limit switch								
Length [m]	Max. cable diameter [mm]	Min. static bending radius [mm]	Min. dynamic bending radius [mm]	Article number				
3	4.5	13.5	18.0	8-10-0275				
5	4.5	13.5	18.0	8-10-0276				
7	4.5	13.5	18.0	8-10-0277				
10	4.5	13.5	18.0	8-10-0278				
15	4.5	13.5	18.0	8-10-0279				

23.7 Damping element

The damping element is used to switch the limit switch in the two carriage end positions (at stroke 0 and stroke max.). Set including mounting material.

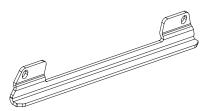


Fig. 23.10 Damping element for linear axes HM/HT

Fig. 23.11 Damping element for cantilever axes HC $\,$

Table 23.9 Article numbers for damping element						
Suitable for linear axis	Article number					
HM, carriage type E	25-001999					
HM, carriage type S, M, L	25-000785					
HT	25-001031					
HC025	25-002196					
HC040	25-002197					
HC060, HC080	25-002198					
HC100B	80056513					
HC150	80077897					
HB250	80073712					

23.8 Motor cable for linear tables HT-L Motor cable matching linear tables HT-L.

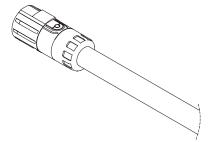
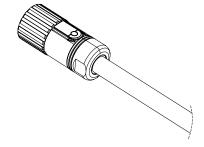


Fig. 23.12 Motor cable for linear table $\operatorname{HT100L}$



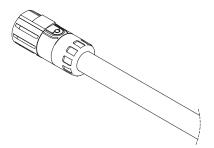
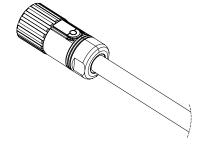

Fig. 23.13 Motor cable for linear table HT150L, HT200L, HT250L, HB250L

Table 23.10 Motor cable for linear table HT-L							
Suitable for linear axis	Length [m]	Connection axis-side	End of cable	Article number			
HT100L	3	Connector 915, 9-pin	Open	8-10-1214			
HT100L	5	Connector 915, 9-pin	Open	8-10-1215			
HT100L	10	Connector 915, 9-pin	Open	8-10-1217			
HT150L, HT200L, HT250L, HB250L	3	Connector M23	Open	8-10-0069			
HT150L, HT200L, HT250L, HB250L	5	Connector M23	Open	8-10-0070			
HT150L, HT200L, HT250L, HB250L	10	Connector M23	Open	8-10-0072			

Accessories

23.9 Encoder cable for incremental distance measuring system for linear tables HT-L

Cable for incremental distance measuring system (option A, B, D, E) for linear axes HT-L.



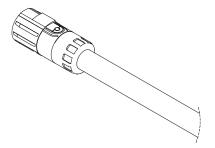

Fig. 23.14 Encoder cable for incremental distance measuring system for linear

Fig. 23.15 Encoder cable for incremental distance measuring system for linear tables HT150L, HT200L, HT250L, HB250L

Suitable for linear axis	Length [m]	Suitable for option	Connection axis-side	End of cable	Article number
HT100L	3	A, B	Connector 915, 15-pin	Connector suitable for ESC-SS for ED1	8-10-1838
HT100L	5	A, B	Connector 915, 15-pin	Connector suitable for ESC-SS for ED1	8-10-1839
HT100L	8	A, B	Connector 915, 15-pin	Connector suitable for ESC-SS for ED1	8-10-1840
HT100L	10	A, B	Connector 915, 15-pin	Connector suitable for ESC-SS for ED1	8-10-1841
HT100L	12	A, B	Connector 915, 15-pin	Connector suitable for ESC-SS for ED1	8-10-1842
HT100L	15	A, B	Connector 915, 15-pin	Connector suitable for ESC-SS for ED1	8-10-1843
HT100L	3	D, E	Connector 915, 15-pin	Connector suitable for ESC-SS for ED1	8-10-1844
HT100L	5	D, E	Connector 915, 15-pin	Connector suitable for ESC-SS for ED1	8-10-1845
HT100L	8	D, E	Connector 915, 15-pin	Connector suitable for ESC-SS for ED1	8-10-1846
HT100L	10	D, E	Connector 915, 15-pin	Connector suitable for ESC-SS for ED1	8-10-1847
HT100L	12	D, E	Connector 915, 15-pin	Connector suitable for ESC-SS for ED1	8-10-1848
HT100L	15	D, E	Connector 915, 15-pin	Connector suitable for ESC-SS for ED1	8-10-1849
HT100L	3	A, D	Connector 915, 15-pin	Open	8-10-1207
HT100L	5	A, D	Connector 915, 15-pin	Open	8-10-1208
HT100L	10	A, D	Connector 915, 15-pin	Open	8-10-1210
HT100L	3	B, E	Connector 915, 15-pin	Open	8-10-1201
HT100L	5	B, E	Connector 915, 15-pin	Open	8-10-1202
HT100L	10	B, E	Connector 915, 15-pin	Open	8-10-1204
HT150L, HT200L, HT250L, HB250L	3	A, B	Connector M17	Connector suitable for ESC-SS for ED1	8-10-1856
HT150L, HT200L, HT250L, HB250L	5	A, B	Connector M17	Connector suitable for ESC-SS for ED1	8-10-1857
HT150L, HT200L, HT250L, HB250L	8	A, B	Connector M17	Connector suitable for ESC-SS for ED1	8-10-1858
HT150L, HT200L, HT250L, HB250L	10	A, B	Connector M17	Connector suitable for ESC-SS for ED1	8-10-1859
HT150L, HT200L, HT250L, HB250L	12	A, B	Connector M17	Connector suitable for ESC-SS for ED1	8-10-1860
HT150L, HT200L, HT250L, HB250L	15	A, B	Connector M17	Connector suitable for ESC-SS for ED1	8-10-1861
HT150L, HT200L, HT250L, HB250L	3	D, E	Connector M17	Connector suitable for ESC-SS for ED1	8-10-1862
HT150L, HT200L, HT250L, HB250L	5	D, E	Connector M17	Connector suitable for ESC-SS for ED1	8-10-1863
HT150L, HT200L, HT250L, HB250L	8	D, E	Connector M17	Connector suitable for ESC-SS for ED1	8-10-1864
HT150L, HT200L, HT250L, HB250L	10	D, E	Connector M17	Connector suitable for ESC-SS for ED1	8-10-1865
HT150L, HT200L, HT250L, HB250L	12	D, E	Connector M17	Connector suitable for ESC-SS for ED1	8-10-1866
HT150L, HT200L, HT250L, HB250L	15	D, E	Connector M17	Connector suitable for ESC-SS for ED1	8-10-1867
HT150L, HT200L, HT250L, HB250L	3	A, D	Connector M17	Open	8-10-0115
HT150L, HT200L, HT250L, HB250L	5	A, D	Connector M17	Open	8-10-0116
HT150L, HT200L, HT250L, HB250L	10	A, D	Connector M17	Open	8-10-0118
HT150L, HT200L, HT250L, HB250L	3	B, E	Connector M17	Open	80028093
HT150L, HT200L, HT250L, HB250L	5	B, E	Connector M17	Open	80028203
HT150L, HT200L, HT250L, HB250L	10	B, E	Connector M17	Open	80028218

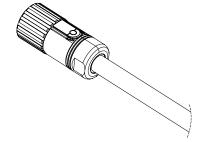


Fig. 23.16 Encoder cable for absolute distance measuring system for linear tables Fig. 23.17 Encoder cable for absolute distance measuring system for linear

tables HT150L, HT200L, HT250L, HB250L

Table 23.12 Encoder cable for absolute distance measuring system (H, T, R, S option)							
Suitable for linear axis	Length [m]	Suitable for option	Connection axis-side	End of cable	Article number		
HT100L	3	H, R	Connector 915, 15-pin	Connector suitable for ESC-SS for ED1	8-10-1850		
HT100L	5	H, R	Connector 915, 15-pin	Connector suitable for ESC-SS for ED1	8-10-1851		
HT100L	8	H, R	Connector 915, 15-pin	Connector suitable for ESC-SS for ED1	8-10-1852		
HT100L	10	H, R	Connector 915, 15-pin	Connector suitable for ESC-SS for ED1	8-10-1853		
HT100L	12	H, R	Connector 915, 15-pin	Connector suitable for ESC-SS for ED1	8-10-1854		
HT100L	15	H, R	Connector 915, 15-pin	Connector suitable for ESC-SS for ED1	8-10-1855		
HT100L	3	H, R, S, T	Connector 915, 15-pin	Open	8-10-1207		
HT100L	5	H, R, S, T	Connector 915, 15-pin	Open	8-10-1208		
HT100L	10	H, R, S, T	Connector 915, 15-pin	Open	8-10-1210		
HT150L, HT200L, HT250L, HB250L	3	H, R	Connector M17	Connector suitable for ESC-SS for ED1	8-10-1868		
HT150L, HT200L, HT250L, HB250L	5	H, R	Connector M17	Connector suitable for ESC-SS for ED1	8-10-1869		
HT150L, HT200L, HT250L, HB250L	8	H, R	Connector M17	Connector suitable for ESC-SS for ED1	8-10-1870		
HT150L, HT200L, HT250L, HB250L	10	H, R	Connector M17	Connector suitable for ESC-SS for ED1	8-10-1871		
HT150L, HT200L, HT250L, HB250L	12	H, R	Connector M17	Connector suitable for ESC-SS for ED1	8-10-1872		
HT150L, HT200L, HT250L, HB250L	15	H, R	Connector M17	Connector suitable for ESC-SS for ED1	8-10-1873		
HT150L, HT200L, HT250L, HB250L	3	H, T, R, S	Connector M17	Open	8-10-0315		
HT150L, HT200L, HT250L, HB250L	5	H, T, R, S	Connector M17	Open	8-10-0316		
HT150L, HT200L, HT250L, HB250L	10	H, T, R, S	Connector M17	Open	8-10-0318		

Accessories

23.11 Partitions for energy chain

Partitions for separating cables in the energy chain By default, the energy chain is equipped with a partition in every second chain link. Additional partitions are available in a set of 20.

Fig. 23.19 Partition for energy chains

Table 23.13 Article numbers for partitions								
Suitable for linear axis	Article number, 20 pcs.							
HT/HB	HS (X-axis)	HS (Y-axis)	HS (Z-axis)					
_	-	_	31, L1	8-05-0393				
100, 150L	21, 31, L1, L2, L3, L4	21, 22, 23, 24, 31, 32, 33, 34	32, 33, 34, L2, L3, L4	8-05-0336				
150B, 150S, 200, 250	22, 23, 24, 32, 33, 34	_	_	8-05-0337				

23.12 Belt for noise reduction of the energy chain

Cellular rubber tape, self-adhesive on one side, for attachment to the contact surface of the energy chain in order to reduce noise emissions. Suitable for all linear axes HT, HB and HS with energy chain (exception HT150L with drive interface E or F). Roll of 10 m

Article number: 25-002485

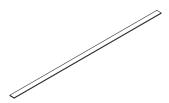


Fig. 23.18 Belt for reduction of noise emissions from the energy chain

23.13 Drive block cover

Cover plate for closing unneeded drives/outputs on linear axes with toothed belt drive HM-B, HT-B, HB-B and HC-B.
Set including mounting material.

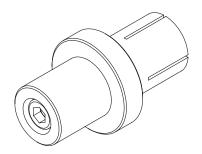


Fig. 23.20 Cover for drive block

Table 23.15 Article numbers for drive block cover			
Suitable for linear axis	Article number		
HC025B	25-002379		
HM040B, HC040B	25-002375		
HM060B, HC060B	25-002376		
HM080B, HC080B	25-002377		
HM120B, HC100B	25-002378		
HT100B	25-002372		
HT150B	25-002373		
HT200B, HT250B	25-002374		
HC150	80111835		
HB250	80111787		

23.14 Journals for linear axes HM-B and cantilever axes HC $\,$

The journal can be clamped to each side of the drive wheel. It can be used to adapt the drive/output, synchronous drive, encoder attachment or the like.

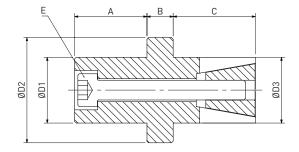
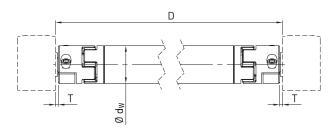
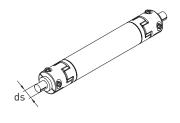


Fig. 23.21 **Journal dimensions**


Table 23.14	Table 23.14 Article numbers and dimensions of journals										
Suitable for linear axis	A [mm]	B [mm]	C [mm]	E (screw)	Ø D1 [mm]	Ø D2 [mm]	Ø D3 [mm]	Screw tightening torque [Nm]	Moment of inertia [kgmm²]	Transmittable torque (arithmetic) [Nm]	Article number
HC025B	12	5.5	14	ISO 4762 M4 × 25	12 h7	17	10	2.9	0.24	7.7	25-002514
HM040B, HC040B	18	5.0	16	ISO 4762 M4 × 30	14 h7	25	14	4.5	1.21	17.0	25-000174
HM060B, HC060B	22	8.0	25	ISO 4762 M6 × 45	20 h7	32	20	10.0	5.37	36.0	25-000175
HM080B, HC080B	30	8.0	27	ISO 4762 M8 × 55	25 h7	45	25	25.0	17.70	81.0	25-000176
HM120B, HC100B, HC150B	30	10.0	32	ISO 4762 M10 × 60	32 h7	55	35	55.0	55.70	213.0	25-000177


Accessories

23.15 Synchronous shaft

The synchronous shaft is used on double axes to transmit the drive torque from the driven axis to the rotating axis. In addition to the actual synchronous shaft, the set also includes the coupling elements and the adaptation material.

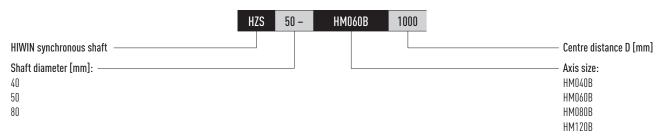
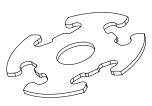


Table 23.17 Dimensions of synchronous shaft					
Suitable for double axis	D min.	D max.	T	Ø shaft	Ø ds
HD1/HM040B	160	1,500	3.2	40	14
HD2/HM060B	186	2,000	7.2	50	20
HD3/HM080B	200	2,400	14.2	50	25
HD4/HM120B	256	3,000	5.7	80	35


Unit: mm

23.15.1 Order code for synchronous shaft

23.15.2 Spacer

The spacer is required when the synchronous shaft is not installed horizontally to prevent metal-on-metal contact in the lower coupling.

Table 23.16 Article numbers for spacer				
Suitable for double axis	Suitable for synchronous shaft	Article number		
HD1/HM040B	HZS40HM040Bxxxx ¹⁾	25-000730		
HD2/HM060B	HZS50HM060Bxxxx ^{1]}	25-000731		
HD3/HM080B	HZS50HM080Bxxxx ¹⁾	25-000731		
HD4/HM120B	HZS80HM120Bxxxxx ^{1]}	25-000733		

¹⁾ xxxx = centre distance D

23.17 HIWIN lubricants

Table 23.19 Recommended HIWIN grease				
Grease type	Area of application	Unit of measure	Article number	
G04	Linear guideway Ball screw	Cartridge 400 g	20-000345	
Grease rack	Rack and pinion	Cartridge 400 g	80076723	

Table 23.20 Recommended HIWIN grease gun					
Article number	Description	Scope of delivery	Comment		
20-000333	Grease gun type GN-400C including lubrication adapter and nozzle set (see Fig. 23.22)	Grease gun type GN-400-C consisting of: Grease gun Hydraulic gripping coupling A1 suitable for conical grease nipples according to DIN 71412, outer diameter 15 mm Hollow mouthpiece A2 for conical and ball grease nipples according to DIN 71412/DIN 3402, outer diameter 10 mm Set of lubrication adapters and nozzles	Suitable for 400 g cartridge or direct filling		

Fig. 23.22 Grease gun GN-400C

23.16 HIWIN grease nippleGrease nipple suitable for HM, HT, HB and HC, all sizes, all drive types.

Article number	Linear axes HM	Linear tables HT	Cantilever axes HC	Figure
20-000325	Standard	Standard: HT100B Option: HT150B, HT200B, HT250B	Standard: HC025B, HC040B, HC060B, HC080B, HC100B	
20-000538	Option	Standard: HT150B, HT200B, HT250B Option: HT100B	Option: HC025B, HC040B, HC060B, HC080B, HC100B	
20-000272	Option	Option	Option: HC025B, HC040B, HC060B, HC080B, HC100B	

Table 23.21 Grease nip	Table 23.21 Grease nipple M10 × 1				
Article number	Bridge axes HB	Cantilever axes HC	Figure		
20-000279	Standard	Standard: HC150B, HC150R			

Accessories

${\bf 23.18\ Push-in\ fittings\ and\ lubrication\ adapters}$

Article number	Description	Figure
8-12-0186	Push-in fitting straight Ø4	M4×0,7
20-002116	Push-in fitting angled Ø 4	18,2 ————————————————————————————————————
20-002108	Lubrication adapter M4/M4 for extending the push-in fittings to avoid collisions (e.g. damping element)	A-A Ø4,2 M4×0,7 A SS S S S S S S S S S S S S S S S S

Article number	Description	Figure
80090309	Hose fitting, 90°, M10×1, d6	21±1 21±1 M10×1 Ø13,5
80074396	Hose fitting, 90°, M10 × 1, d8	29,8 23,5 15
80112336	Lubrication adapter, M8 × 1 auf M10 × 1	A-A M10×1 A - A M10×1 A - A A -

Glossary

24. Glossary

Positioning accuracy

The positioning accuracy describes the maximum deviation between the actual and target position.

For toothed belt axes HM-B, HT-B and HC-B, the positioning accuracy depends on the manufacturing accuracy of the toothed belt (tooth pitch) and the belt pre-tension. Since this deviation is largely linear, it can be easily measured and compensated for via a correction factor. The correction factor is determined as a target/actual deviation, multiplied by the feed constant of the axis and stored accordingly in the control unit. Please contact HIWIN for more information.

Repeatability

The repeat accuracy indicates how accurately the carriage is positioned when approaching a position several times from the same direction (unidirectional). The maximum deviation between the actual positions reached is indicated.

Static load rating Co

Static load rating C_0 corresponds to a static load that causes a permanent deformation of 0.0001 × ball diameter at the contact point that is most heavily loaded. It is fundamental for the calculation of static applications.

Dynamic load rating C_{dyn}

Dynamic load rating C_{dyn} describes the load at which 90% of similar linear guideways reach the life expectancy of 50 km. It is fundamental for the calculation of dynamic applications.

Permissible load data

The permissible load data are the relevant load data for the linear axis, taking into account the design properties of the linear axis, such as limitations from the screw connections or reaction forces of the drive elements. These permissible load data ensure a realistic reference service life of the linear axis between 5,000 km and 20,000 km, depending The service life L of the linear axis is calculated using the permissible load data and the load comparison factor f_v according to formula F3.10.

Theoretical load data

The theoretical load data refers to a service life of 100 km and is only used for comparability between different linear axis and profile rail manufacturers. It is not permissible to apply a load with the theoretical load data. There is a risk of damaging the linear axis.

Load capacity

The typical load capacity is used to pre-select the appropriate size based on experience and taking into account combined loads.

Feed constant

The feed constant corresponds to the distance in mm that the carriage travels during one revolution of the drive.

Flatness

Measure for the vertical straightness of a movement on the X-axis in X and Y direction. A deviation from absolute flatness is a displacement on the Z-axis when moving on the X-axis.

Straightness

Measure for the horizontal straightness of a movement on the X-axis. A deviation from absolute straightness is a displacement on the Y-axis when moving on the X-axis.

Continuous force F_c

Continuous force or nominal force that the linear motor of axes HT-L can deliver in continuous operation (duty cycle ED = 100%).

Peak force F_n

The peak force is the maximum force that a linear motor can generate for about one second when peak current I_0 is applied.

Peak current ID

Applied briefly to generate the peak force on linear axes with a linear motor. The maximum permissible duration of the peak current is one second. The linear motor must then cool down to the nominal temperature before the peak current can be applied again.

Stroke

The stroke is the travel distance that the carriage can cover between the two switching points of the limit switches.

Reserve stroke

Reserve stroke L_r corresponds to the distance that can be travelled in addition to the stroke on both sides of the end positions (stroke 0, stroke max.) before the carriage reaches the mechanical end position (mechanical 0) L_{C_mech0} at the built-in stop buffers. The reserve stroke is set at the factory for each axis size.

The reserve stroke for each axis size can be found in the "Dimensions and specifications" sections of the respective axis type.

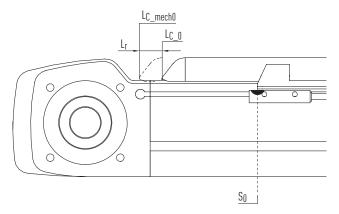


Fig. 23.23 Illustration of reserve stroke (example: linear module HM-B)

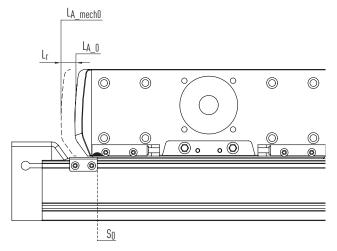


Fig. 23.24 Illustration of reserve stroke (example: cantilever axis HC)

 $\begin{array}{lll} L_{C_mech0} & \text{Carriage position at mechanical 0 (rubber buffer stop)} \\ L_{C_0} & \text{Carriage position at stroke 0 (switching point sensor)} \\ L_{A_mech0} & \text{Position of the drive block at mechanical 0 (rubber buffer stop)} \\ L_{A_0} & \text{Position of the drive block at stroke 0 (switching point sensor)} \\ S_0 & \text{Switching point sensor at stroke 0} \end{array}$

All rights reserved.

Complete or partial reproduction is not permitted without our permission.

Note:

The technical data in this catalogue may be changed without prior notice.